

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Fourier coefficient of repetitive impulse $\delta_T(t)$ with time period T is given by

(A) 1/ T	(B) T
(C) 2T	(D) 2π

b. System defined by $y(n) = x(n) \cdot x(n-2)$ is memory less

(A) yes	(B) no
(C) requires additional data	(D) can't defined.

c. Analog signal of bandwidth B is sampled at the minimum Nyquist rate. The folding frequency will be

(A) 2B	(B) B*B
(C) B/2	(D) B only.

d. A discrete-time LTI system is BIB0 stable if its impulse response is

(A) absolutely summable,(C) divisible

(B) integrable(D) requires additional data.

- e. Fig .1 shows _____ signal. (Fill the blank.)
 - (A) Odd
 - (**B**) Even
 - (C) Continuous
 - (**D**) Real part

www.StudentBounty.com Homework Help & Pastpapers

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Prove that

- (i) $\delta(n) = u(n) u(n-1)$
- (ii) r(n) = n u(n)
- (iii) Discrete time unit step is running sum of the unit impulse.
- (iv) Power of the signal x(t) = cos(t) is 0.5.
- (8)

(8)

b. Draw block diagram representation of causal LTI systems described by the following difference equations:
(i) y(n) = 0.5 y(n-1) + 0.25 x(n) and (ii) d y(t)/dt +3y(t) =x(t).

Q.3 a. Find the Exponential Fourier series for the signal shown in Fig. 2 (8)

www.StudentBounty.com Homework Help & Pastpapers

- Q.4 a. The response of an LTI system with impulse response $h(t) = e^{-at} u(t)$, a > 0, to the input signal $x(t) = e^{-bt} u(t)$, b > 0; find the output signal y(t). (8)
 - b. An LTI system whose response to the input $x(t) = [e^{-t} + e^{-3t}] u(t)$ is $y(t) = [2e^{-t} e^{-4t}] u(t)$. Find
 - (i) The frequency response of the system.
 - (ii) The differential equation relating the input and output of this system.(8)
- Q.5 a. Consider a causal LTI system characterized by the difference equation y(n) - (3/4) y (n-1) + (1/8) y (n-2) = 2 x(n); Obtain impulse response of the system using discrete - time Fourier transform. (8)
 - b. State and prove the convolution and multiplication properties of discrete Fourier Transform. (8)
- **Q.6** a. Define Group delay. Consider the following frequency response for a causal and stable LTI system: H(jw) = (1-jw) / (1+jw).
 - (i) If |H(jw)| = A, and determine the value of A.
 - (ii) Show that $\tau(w) > 0$ for w > 0; where $\tau(w)$ is group delay of the system (8)
 - b. State and prove the sampling theorem for low pass signal and band pass signal and also explain the reconstruction of signal from its sample value. (8)
- **Q.7** a. For an LTI system the input is given by $x(t) = e^{-3t} u(t)$ and the output is given by $y(t) = [e^{-t} e^{-2t}] u(t)$. Determine the system function, ROC and characteristic equation of the system using Laplace Transform. (8)
 - b. For the circuit shown in Fig. 3,
 - (i) Determine the system function H(s) and
 - (ii) Impulse response h(t) using Laplace transformation only (8)

www.StudentBounty.com Homework Help & Pastpapers

- b. Define and explain the following terms as applied to random variables:
 - (i) Mean,
 - (ii) Variance
 - (iii) Co-variance
 - (iv) Autocorrelation.

(8)