NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Fourier coefficient of repetitive impulse $\delta_{\mathrm{T}}(\mathrm{t})$ with time period T is given by
(A) $1 / \mathrm{T}$
(B) T
(C) 2 T
(D) 2π
b. System defined by $y(n)=x(n) \cdot x(n-2)$ is memory less
(A) yes
(B) no
(C) requires additional data
(D) can't defined.
c. Analog signal of bandwidth B is sampled at the minimum Nyquist rate. The folding frequency will be
(A) 2 B
(B) $\mathrm{B} * \mathrm{~B}$
(C) B/2
(D) B only.
d. A discrete-time LTI system is BIB0 stable if its impulse response is
(A) absolutely summable,
(B) integrable
(C) divisible
(D) requires additional data.
e. Fig . 1 shows \qquad signal. (Fill the blank.)
(A) Odd
(B) Even
(C) Continuous
(D) Real part

Fig. 1
f. Laplace transform of unit step function is
(A) s
(B) $1 / 2 \mathrm{~s}$
(C) $1 / \mathrm{s}$
(D) $2 / \mathrm{s}$.
g. $\mathrm{X}(\mathrm{t}) \leftrightarrow 2 \pi \mathrm{x}(-\mathrm{w})$ indicates \qquad property of Fourier transform,
(A) Duality
(B) symmetry
(C) both (A) and (B)
(D) time reversal.
h. $\mathrm{x}(-\mathrm{n}) \leftrightarrow \mathrm{X}(1 / \mathrm{z})$ defines the following property of Z-transform
(A) time-scaling
(B) time-expansion
(C) time-reversal
(D) time-domain.
i. Ideal low-pass filter or continuous -time and discrete -time introduce ___ phase distortion. (fill blank)
(A) all
(B) dispersion
(C) constant
(D) zero
j. Parseval's relation for a periodic signal $\int_{-\infty}^{\infty}\left|\mathrm{x}(\mathrm{t})^{2}\right| \mathrm{dt}$ equal to
(A) $\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\mathrm{X}(\mathrm{j} \omega)|^{2} \mathrm{~d} \omega$
(B) $\int_{-\infty}^{\infty}|X(j \omega)|^{2} \mathrm{~d} \omega$
(C) $\frac{1}{\pi} \int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega$
(D) None of the above

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Prove that
(i) $\delta(\mathrm{n})=\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-1)$
(ii) $\mathrm{r}(\mathrm{n})=\mathrm{nu}(\mathrm{n})$
(iii) Discrete - time unit step is running sum of the unit impulse.
(iv) Power of the signal $x(t)=\cos (t)$ is 0.5 .
b. Draw block diagram representation of causal LTI systems described by the following difference equations:
(i) $y(n)=0.5 y(n-1)+0.25 x(n)$ and (ii) $d y(t) / d t+3 y(t)=x(t)$.
Q. 3 a. Find the Exponential Fourier series for the signal shown in Fig. 2

Fig. 2
b. State and explain the properties of discrete time Fourier series.
Q. 4 a. The response of an LTI system with impulse response $h(t)=e^{-a t} u(t), a>0$, to the input signal $x(t)=e^{-b t} u(t), b>0$; find the output signal $y(t)$.
b. An LTI system whose response to the input $x(t)=\left[e^{-t}+e^{-3 t}\right] u(t)$ is $y(t)=\left[2 e^{-t}-e^{-4 t}\right] u(t)$. Find
(i) The frequency response of the system.
(ii) The differential equation relating the input and output of this system.(8)
Q. 5 a. Consider a causal LTI system characterized by the difference equation $y(n)-(3 / 4) y(n-1)+(1 / 8) y(n-2)=2 x(n)$; Obtain impulse response of the system using discrete - time Fourier transform.
b. State and prove the convolution and multiplication properties of discrete Fourier Transform.
Q. 6 a. Define Group delay. Consider the following frequency response for a causal and stable LTI system: $\mathrm{H}(\mathrm{jw})=(1-\mathrm{jw}) /(1+\mathrm{jw})$.
(i) If $|\mathrm{H}(\mathrm{jw})|=\mathrm{A}$, and determine the value of A .
(ii) Show that $\tau(w)>0$ for $w>0$; where $\tau(w)$ is group delay of the system (8)
b. State and prove the sampling theorem for low pass signal and band pass signal and also explain the reconstruction of signal from its sample value.
Q. 7 a. For an LTI system the input is given by $x(t)=e^{-3 t} u(t)$ and the output is given by $y(t)=\left[e^{-t}-e^{-2 t}\right] u(t)$. Determine the system function, ROC and characteristic equation of the system using Laplace Transform.
b. For the circuit shown in Fig. 3,
(i) Determine the system function H (s) and
(ii) Impulse response $\mathrm{h}(\mathrm{t})$ using Laplace transformation only

Q. 8 a. Consider the signal $x(n)=a^{n}, 0 \leq n \leq N-1$, $a>0$ and 0 otherwise. Find $X(Z)$ state ROC and plot the pole-zero pattern for $\mathrm{N}=8$.
b. Find Inverse Z-transform of
(i) $\mathrm{X}(\mathrm{z})=(1 / 1024)\left[\left(1024-\mathrm{z}^{-10}\right) /\left(1-0.5 \mathrm{z}^{-1}\right)\right],|\mathrm{z}|>0$.
(ii) $X(z)=\log \left(1+a z^{-1}\right),|z|>|a|$.
Q. 9 a. A Continuous random variable X is uniformly distributed between 0 and π. Determine the CDF and PDF for the random variable X .
b. Define and explain the following terms as applied to random variables:
(i) Mean,
(ii) Variance
(iii) Co-variance
(iv) Autocorrelation.

