Subject: LINEAR ICs & DIGITAL ED

ROLL NO.

AMIETE – ET/CS/IT (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

AL ED Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The bandwidth of an ideal Op-Amp is

(A) 0	(B) 1MΩ
(C) ∞	(D) 80KΩ

b. If the change in voltage is $\Delta V = 2.4 V$ and rise time 4µs then slew rate of the Op-Amp is

(A) $0.4 V/\mu s$	(B) $0.5 \mathrm{V/\mu s}$
(C) $0.1 V/\mu s$	(D) $0.6 V/\mu s$

c. The output voltage of an Op-Amp integrator is

(A) $V_0(t) = -R_1C_f \int V_i(t)dt$	(B) $V_0(t) = -R_1 \int V_i(t) dt$
(C) $V_0(t) = -\frac{1}{R_1 C_f} \int V_i(t) dt$	(D) $V_{O}(t) = \int V_{i}(t) dt$

d. The output frequency of a triangular wave generator is given by

(A)
$$f_0 = \frac{R_1 R_3}{4R_2 C_1}$$

(B) $f_0 = \frac{R_3}{4R_1 C_1 R_2}$
(C) $f_0 = \frac{1}{4R_1 R_2 R_3 C_1}$
(D) $f_0 = \frac{R_2}{4R_1 R_3 C_1}$

AE54/AC54/AT54/ DEC _ 2011

Subject: LINEAR ICs & DIGITAL ED

ROLL NO.

studentBounts.com e. The equivalent weight of the LSB in a 4 bit variable resistive divider DAC is

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{16}$
(C) $\frac{1}{15}$ (D) $\frac{1}{32}$

- f. An XOR gate gives a high output
 - (A) if there are odd number of 1's in input.
 - (B) if there are odd number of 0's in input.
 - (C) if there are even number of 1's in input.
 - (**D**) if there are even number of 0's in input.
- g. For checking the parity of a digital word, it is preferable to use

(A) AND gates	(B) NAND gates
(C) EXOR gates	(D) NOR gates

h. The maximum number of binary states that a counter can have if it uses 8 FlipFlops is

(A) 8	(B) 16
(C) 64	(D) 256

i. To obtain 10 KHz square wave from 1 MHz clock, ÷by counter to be used is

(A) \div by 10 counter	(B) \div by 100 counter
(C) \div by 1000 counter	$(\mathbf{D}) \div by 1 counter$

j. What will be the output voltage of a 6 bit binary ladder DAC with input 101001 if V(0) = 0 and V(1) = 10 V

(A) 6.41V	(B) 0.0156V
(C) 6.4V	(D) 4.1V

PART (A) Answer At least TWO questions. Each question carries 16 marks.

- a. Derive the output expression for a differential amplifier using Op-Amp. Using Q.2 the same, derive the expression for CMRR of the differential amplifier. (4+4)
 - b. Explain the method of frequency compensation using dominant pole compensation method. (8)

AE54/AC54/AT54/DEC = 2011

Subject: LINEAR ICs & DIGITAL ED

ROLL NO.

- StudentBounty.com 0.3 a. A square wave of frequencies 100 Hz, 10 KHz and 1MHz are applied as input to an Op-Amp voltage follower. The Op-Amp has a slew rate of $1V/\mu s$. Show the output waveforms for these 3 cases & explain.
 - b. Explain the operation of a precision full wave rectifier with waveforms.
- **Q.4** a. In an Op-Amp Schmitt trigger circuit $R_2 = 110K\Omega$, $R_1 = 60K\Omega$, $V_{ref} = 2V$ $V_i = 1V pp$ sinewave saturation voltage = $\pm 15V$. Determine the threshold voltages V_{LT} & V_{UT}. (8)
 - b. Draw a sample and hold circuit. Explain its operation and indicate its uses. (8)
- a. (i)Draw the diagram and explain the operation of a fixed regulator used as **Q.5** adjustable regulator. (ii)Using the above circuit with IC 7805. design for $V_0 = 7.5V$, $I_0 = 4.2mA$, $V_R = 5V$, $I_{R1} = 25mA$. (4+4)
 - b. (i) Explain the operation of R-2R ladder DAC. (ii) Calculate the output voltage for 10000000_2 for R-2R ladder DAC $R_F = R = 5K\Omega$ for a reference voltage of 5V. (4+4)

PART (B) Answer At least TWO questions. Each question carries 16 marks.

- **Q.6** a. Perform the following:
 - (i) Add 120 with -55 in 2's complement method.
 - (ii) Subtract -68 from -15 in 2's complement.
 - (iii) $(24.6)_{10} = ()_2$
 - (iv) $(0.640625)_{10} = ()_8$ (v) $(0.582)_{\rm H} = ()_{10}$ (vi) $(574)_8 = ()_2$ (8)
 - b. Perform the following BCD addition: (i) 175 + 326(ii) 589 + 199 (8)
- a. Simplify the given Boolean expression using Boolean theorems and implement **Q.7** using basic gates.

(i)
$$AB + \overline{AC} + A\overline{BC}(AB + C)$$

(ii) $XY + XYZ + XY\overline{Z} + \overline{X}YZ$ (6)

AE54/AC54/AT54/DEC = 2011

AMIETE - ET/CS/IT (NEW SCHEME)

Subject: LINEAR ICs & DIGITAL ED

ROLL NO.

b. Reduce the following function using K map technique

(i)
$$f(A, B, C, D) = \sum m(0,1,4,8,9,10)$$

StudentBounty.com (ii) Draw the gate level diagram to 4:1 MUX. Draw the truth table and the output expression.

- a. What is an encoder? Draw and explain the truth table of an octal to binary **Q.8** encoder. (8)
 - b. Explain clocked SR FlipFlop with the help of truth table and diagram. Convert the same into and clocked D FlipFlop and explain its working. (8)

Q.9 a. Write short notes on:-

(i)	hnson counter or Twisted ring counter.	(6)
(i)	hnson counter or Twisted ring counter.	(

- (ii) 3 bit synchronous binary counter. (6)
- b. (i) A counter has 14 stable states 0000 through 1101. If the input frequency is 50 KHz, what will be its output frequency. (2)

(ii) The propagation delay time t_{pd} for each flip flop is 50ns. Determine the maximum operating frequency for mod 32 ripple counter. (2)