AMIETE - ET/CS/IT (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $u=x^{y}$ then the value of $\frac{\partial u}{\partial x}$ is equal to
(A) 0
(B) y^{y-1}
(C) $x y^{x-1}$
(D) $\mathrm{x}^{\mathrm{y}} \log (\mathrm{x})$
b. The value of integral $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ is equal to
(A) $\frac{3}{4}$
(B) $\frac{3}{8}$
(C) $\frac{3}{5}$
(D) $\frac{3}{7}$
c. If two eigen values of $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ are 3 and 15 , then the third eigen value is
(A) 0
(B) 1
(C) -1
(D) 2
d. In solving simultaneous equations by Gauss-Jordan Method, the coefficient matrix is reduced to \qquad matrix.
(A) Identity
(B) Diagonal
(C) Null
(D) None of these
e. The differential equation $\left(x+x^{8}+a y^{2}\right) d x+\left(y^{8}-y+b x y\right) d y=0$ is exact if
(A) $b=2 a$
(B) $\mathrm{b}=\mathrm{a}$
(C) $a=2 b$
(D) $a=-b$
f. The square matrix ' A ' is called orthogonal if
(A) $A=A^{2}$
(B) $\mathrm{A}^{\prime}=\mathrm{A}^{-1}$
(C) $\mathrm{A}=\mathrm{A}^{-1}$
(D) $\mathrm{AA}^{-1}=\mathrm{I}$
g. The Bessel's equation of order 0 is given as
(A) $x y^{\prime \prime}+y^{\prime} x+x y=0$
(B) $y^{\prime \prime}+y^{\prime} x+x y=0$
(C) $x y^{\prime \prime}+y^{\prime}+x y=0$
(D) $x y^{\prime \prime}+y^{\prime} x+y=0$
h. The value of integral $\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} \mathrm{xy}^{2} \mathrm{zdx}$ dy dz is equal to
(A) 22
(B) 26
(C) 5
(D) 25
i. If λ is an eigen value of a non-singular matrix A then the eigen value of A^{-1} is
(A) $1 / \lambda$
(B) λ
(C) $-\lambda$
(D) $-1 / \lambda$
j. The value of the integral $\int x^{2} J_{1}(x) d x$ is
(A) $\mathrm{x}^{2} \mathrm{~J}_{1}(\mathrm{x})+\mathrm{c}$
(B) $\mathrm{x}^{2} \mathrm{~J}_{-1}(\mathrm{x})+\mathrm{c}$
(C) $x^{2} J_{2}(x)+c$
(D) $\mathrm{x}^{2} \mathrm{~J}_{-2}(\mathrm{x})+\mathrm{c}$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. If $x+y=2 e^{\theta} \cos \phi$ and $x-y=2 i e^{\theta} \sin \phi$, show that

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial \phi^{2}}=4 x y \frac{\partial^{2} u}{\partial x \partial y} \tag{8}
\end{equation*}
$$

b. If $u=a^{3} x^{2}+b^{3} y^{2}+c^{3} z^{2}$ where $x^{-1}+y^{-1}+z^{-1}=1$, show that the stationary value of u is given by $x=\frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$
Q. 3 a. Evaluate the integral $\iint_{\mathrm{R}} \sqrt{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}$ dxdy by changing to polar coordinates, R is the region in the $x-y$ plane bounded by the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
b. Evaluate the integral $\iiint_{T} z d x d y d z$, where T is region bounded by the cone $x^{2} \tan ^{2} \alpha+y^{2} \tan ^{2} \beta=z^{2}$ and the planes $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{h}$ in the first octant.
Q. 4 a. Investigate the values of λ for which the following equations are consistent

$$
\begin{gather*}
(\lambda-1) \mathrm{x}+(3 \lambda+1) \mathrm{y}+2 \lambda \mathrm{z}=0 \\
(\lambda-1) \mathrm{x}+(4 \lambda-2) \mathrm{y}+(\lambda+3) \mathrm{z}=0 \\
2 \mathrm{x}+(3 \lambda+1) \mathrm{y}+3(\lambda-1) \mathrm{z}=0 \tag{8}
\end{gather*}
$$

hence find the ratios of $x: y: z$ when λ has the smallest of these values.
b. Find the eigen value and eigen vector of the matrix $A=\left(\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right)$.
Q. 5 a. Find the solution of the differential equation $(y-x+1) d y-(y+x+2) d x=0$.
b. Solve the differential equation $\cot 3 x \frac{d y}{d x}-3 y=\cos 3 x+\sin 3 x, 0<x<\pi / 2$.
Q. 6 a. Find the general solution of the equation $y^{\prime \prime}-4 y^{\prime}+13 y=18 e^{2 x} \sin 3 x$.
b. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+y=\log x \frac{\sin (\log x)+1}{x}$.
Q. 7 a. Find the power series solution about the point $x_{0}=2$ of the equation

$$
\begin{equation*}
y^{\prime \prime}+(x-1) y^{\prime}+y=0 \tag{10}
\end{equation*}
$$

b. Prove that $\int_{0}^{1} \frac{\mathrm{x}^{2}}{\sqrt{\left(1-\mathrm{x}^{4}\right)}} \mathrm{dx} \times \int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{\left(1+\mathrm{x}^{4}\right)}}=\frac{\pi}{4 \sqrt{2}}$
Q. 8 a. Express $\mathrm{J}_{5}(\mathrm{x})$ in terms of $\mathrm{J}_{0}(\mathrm{x})$ and $\mathrm{J}_{1}(\mathrm{x})$.
(8)
b. Express $f(x)=x^{4}+2 x^{3}-6 x^{2}+5 x-3$ in terms of Legendre Polynomial.
Q. 9 a. Solve by Gauss-Seidel method, the following system of equations:
$28 x+4 y-z=32$;
$x+3 y+10 z=24$;
$2 x+17 y+4 z=35$.
b. Using Runge-Kutta method of fourth order, solve for $\mathrm{y}(0.1), \mathrm{y}(0.2)$ given that

$$
\begin{equation*}
\frac{d y}{d x}=x y+y^{2}, y(0)=1 \tag{8}
\end{equation*}
$$

