Subject: MATHEMATICS-II

ROLL NO.

AMIETE – ET/CS/IT (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The complete solution of the $2\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$ is

(A)
$$z = f_1(y - 2x) + f_2(y - \frac{1}{2}x)$$
 (B) $z = f_1(y - 2x) + f_2(y + 2x)$
(C) $z = f_1(y - \frac{3}{2}x) + f_2(y + \frac{3}{2}x)$ (D) $z = f_1(y - 5x) + f_2(y + 5x)$

b. Eliminating the arbitrary function from $z = f(x^2 - y^2)$, the partial differential equation is

- (A) $p^2 + q^2 = 0$ (B) $p^2 - q^2 = 0$ (C) yp + xq = 0(D) $x^2 + y^2 = 0$
- c. The probability of getting 4 heads in 6 tosses of a fair coin is

(A)
$$\frac{1}{2}$$
 (B) $\frac{15}{64}$
(C) $-\frac{1}{2}$ (D) $-\frac{15}{20}$

d. The mean of the Binomial distribution with n observations and probability of success p, is

$$(\mathbf{A}) \ \sqrt{\mathbf{n}} \ \mathbf{p} \qquad \qquad (\mathbf{B}) \ \mathbf{p} \ \mathbf{q}$$

(C) n p (D) \sqrt{pq}

AE32/4C32/4T35 / DEC _ 2011

Subject: MATHEMATICS-II

ROLL NO.

studentBounty.com e. The angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point (2,-1,2) is

(A) $\cos^{-1}(\frac{8}{3\sqrt{21}})$	(B) $\sin^{-1}(\frac{8}{3\sqrt{21}})$
(C) 90^0	(D) 180°

f. If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$, the value of curl \vec{F} is (B) Variable Vector (A) Constant Vector (C) Zero Vector **(D)** 2i + 3j + 4k

g. The values of a and b for which the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at (1, -1,2) are

(A) $a = \frac{5}{2}, b = 1$ **(B)** $a = 1, b = \frac{5}{2}$ (C) a = -1, b = -1**(D)** a = b = 0

h. The value of
$$\int_{0}^{2+i} (\bar{z})^2 dz$$
 along $2y = x$ is

(A)
$$\frac{14}{3} + i\frac{11}{3}$$

(B) $\frac{7}{2} + i\frac{5}{2}$
(C) $\frac{11}{3} - i\frac{5}{3}$
(D) $\frac{10}{3} - i\frac{5}{3}$

i. The residue of
$$\oint_{c} \frac{e^{Z}}{(z+1)^{2}} dz$$
 at $|z-1| = 3$ is

(A) 1
(B)
$$2\pi i$$

(C) $-2\pi i$
(D) $\frac{2\pi i}{e}$

j. The value of
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta}$$
 for $|z| = 1$ is

(A)
$$\frac{2\pi}{\sqrt{3}}$$
 (B) $2\pi i$
(C) 1 (D) -1

AE35/AC35/AT35 / DEC = 2011

AMIETE - ET/CS/IT (OLD SCHEME)

Subject: MATHEMATICS-II

ROLL NO.

www.StudentBounty.com Homework Help & Pastpapers

ROLL NO.

(8)

- b. Solve (mz ny)p + (nx lz)y = ly mx.
- **Q.8** a. Use the method of separation of variable to solve the partial differential 2... 7---

Roll No.de: AE35/AC35/AT35Subject: MATHEMATICS-IISolve
$$(mz - ny)p + (nx - lz)y = ly - mx$$
.(8)Use the method of separation of variable to solve the partial differential
equation $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$; $u(x,0) = 4 e^{-x}$ (8)

- b. A tightly stretched string of length ℓ with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3 \frac{\pi x}{\ell}$. Find the displacement y (x, y). (8)
- 0.9 a. In a referendum 60% of voters voted in favour. A random sample of 200 voters was selected. What is the probability that in sample
 - (i) more than 130 voted in favour
 - (ii) between 105 and 130 inclusive voted in favour
 - (iii) 120 voted in favour

b. Determine the analytic function
$$f(z)$$
, where $f(z) = u(x, y) + i v(x, y)$, if
 $v(x, y) = log(x^2 + y^2) + x - 2y$. (8)

AE35/AC35/AT35 / DEC = 2011

AMIETE - ET/CS/IT (OLD SCHEME)