ROLL NO. Code: AE08 Subject: CIRCUIT THEORY & DESIC AMIETE - ET (OLD SCHEME) Max. Marks: 100 Morte: There are 9 Questions in all. 9 Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper. 9 Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

a. The following constitutes a bilateral element

(A) A resistor	(B) A diode
(C) A transistor	(D) A graph

- b. A constant voltage source with 10 V and series internal resistance of 100 ohm is equivalent to a current source of
 - (A) 100 mA in parallel with 100 ohm
 - (B) 1000 mA in parallel with 100 ohm
 - (C) 100 A in parallel with 10 ohm
 - (**D**) 100 mA in parallel with 1000 ohm
- c. Kirchoff's Voltage Law (KVL) is indicating conservation of

(A) Power	(B) Energy
(C) Flux	(D) Charge

d. Which of the following quantities possess the dimension of time?

		(B) L/R
(C)	$(LC)^{1/2}$	(D) All of the above

e. Superposition theorem is not applicable in:

(A) Voltage responses	(B) Power responses
(C) Current responses	(D) All of the above three

AFOR / DEC _ 2011

AMIETE - ET (OI D CCHEME)

1

	Code: AE08 Subject: CIRCUIT THEORY & DESIG f. A series resonant circuit is inductive at f = 1200 Hz. The circuit will be capacitive some where at (A) f > 1200 Hz (B) f < 1200 Hz. (C) f equal to 1200 Hz and by adding a resistance in series		
Code:	AE08 Subject:	CIRCUIT THEORY & DESIG	
f.	A series resonant circuit is induct capacitive some where at	ive at $f = 1200$ Hz. The circuit will be	
	 (A) f > 1200 Hz (B) f < 1200 Hz. (C) f second to 1200 Hz and here ddi 		
	(C) f equal to 1200 Hz and by addit (D) $f = 600 + f_o$ (where $f_{o=}$ resonant	nce frequency).	
g.	g. If the load connected to the source is inductive for a maximum transfer of power from source to load, the source impedance should be		
	(A) Inductive(C) Resistive	(B) Capacitive(D) Combination of L & C	
h.	n. The junction of two or more branches is known as		
	(A) graph(C) ground	(B) node(D) chord	
i.	An attenuator is		
	(A) R- L-C network(C) R-L network	(B) R's network(D) R-C network	

- j. An ideal filter should have
 - (A) Zero attenuation in the pass band
 - (B) Zero attenuation in the attenuation band.
 - (C) Infinite attenuation in the pass band
 - (D) None of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Explain the following:
 - (i) Ideal Voltage Source
 - (ii) Energy and power in an inductor.
 - (iii) Resonance
 - (iv) Pole-zero diagram

- (8)
- b. A circuit consist of a voltage source $v(t) = V e^{(-\alpha t)} t > 0$; a switch (k), and R-L elements all connected in series. Draw the circuit. If at t=0 the switch is closed. Find i(t) for (i) $\alpha \neq R/L$ and (ii) $\alpha = R/L$. (8)
- Q.3 a. State and prove Reciprocity theorem. Also, state the applications of Reciprocity theorem. (8)

		_ 2011
--	--	--------

າ

Www.StudentBounty.com Homework Help & Pastpapers

Q.4 a. A resistive network is described by the following set of Nodal equations. Develop the possible network and calculate the nodal voltages.

$$7V_1 - 3V_2 - 4V_3 = -11$$

-3V_1 + 6V_2 - 2V_3 = 3
-4V_1 - 2V_2 + 11V_3 = 25 (12)

b A 0.2 H inductor is in parallel with a 100 Ohm resistor. The inductor current is 4 A at t=0. Determine the inductor current i $_{L}(t)$ at 0.8 m sec. (4)

Q.5 a. Realise
$$T(s) = \frac{s^2}{(s+2)(s+5)}$$
 (8)

b. With the help of flow-chart, explain the method of determining the steady – state response using phasors. (8)

Q.6 a. From the following Z(s) develop a reliable network
$$Z(s) = \frac{2(s^2 + 1)(s^2 + 9)}{s(s^2 + 4)}$$
 (8)

- b. "Total average power supplied to one port network from the source is the sum of P_{av} for each element of the network". Prove it. (8)
- **Q.7** a. Differentiate the term network analysis and network synthesis. Realise a RLC network whose driving point impedance is given by

$$Z(s) = \frac{(s^2 + 2s + 6)}{s(s+3)}$$
(2+6)

b. Find the Foster-I and Cauer-II form , from the following impedance function

$$Z(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$$
(4+4)

- Q.8 a. Discuss the frequency scaling. (4)
 - b. Explain basic synthesis procedure. (4)

AFOR / DFC _ 2011

2

www.StudentBounty.com Homework Help & Pastpapers

Code: AE08

Subject: CIRCUIT THEORY & DESIG

ROLL NO.

StudentBounty.com c. Obtain the Z- parameter for the Circuit shown in the Fig.2. Draw the Z- parameter equivalent model. State whether the network is reciprocal or symmetrical. Assume R1 = 1 ohm and R2 = 2 ohms.

Fig. 2

- Q.9 a. Describe the method of frequency transformation with a typical example. (8)
 - b. Differentiate single tuned and double tuned circuit. A tank circuit have a capacitor of 100 pF and an inductor of 150 µ H. The resistance of the inductor is 5 Ω . Calculate
 - (i) resonant frequency
 - (ii) impedance at resonance
 - (iii) Q-factor
 - (iv) bandwidth.

(8)

Л