Code: AE06/AC04/AT04 Subject: SIGNALS & S

AMIETE - ET/CS/IT (OLD SCHEME)

Time: 3 Hours DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:
-----	--

 (2×10)

- a. Signal $x(t) = e^{-at} u(t)$, a > 0 is a
 - (A) Power signal

- (B) Energy signal
- (C) neither (A) and (B)
- (D) can't decide
- b. The Fourier transform of an impulse function is
 - (A) $\delta(w)$

(B) $2\pi w$

(C) 1

- (\mathbf{D}) sinc(w)
- c. $\delta(n-N) * \delta(n+N)$ will result in
 - (A) Zero

(B) Always 1

(C) N

- (D) can't decide from given data
- d. Convolution is used to find _____
- of an LTI System.(Fill the blank)
- (A) Impulse response
- **(B)** Frequency response
- (C) time response
- (D) phase response
- e. Z-transform of x (-n) will be
 - (A) $X(Z^{-1})$

(B) X (-1/Z)

(C) $X(1/Z^{-1})$

- **(D)** Z
- f. Laplace Transforms of the functions $x(t) = 4 \sin(100t)u(t)$ is
 - (A) $100/(s^2 + 400^2)$
- **(B)** $400 / (s^2 + 100^2)$
- (C) $100 / (s + 400)^2$
- **(D)** $400 / (s + 100)^2$
- g. The signal $y(t) = \sin(x(t))$ is
 - (A) linear, causal

- (B) linear, non-causal
- (C) non-linear, causal
- (D) non-linear, non-causal
- h. The ideal band-limited interpolation uses

(A) since function

(D) sine ways

Subject: SIGNALS & S

i.

Code: AE06/AC04/AT04

For the signal shown in the above fig. The integral $\int\limits_{-\pi}^{\pi} \!\! \left| X \! \left(\! e^{j\omega} \right) \! \right|^2 \! d\omega$ will give

(A) 2π

(B) 4π

(C) 16π

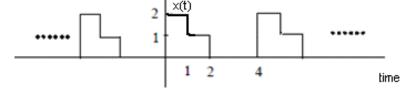
- (D) 28π
- j. For a random variable f(x) the integral $\int x f(x) dx$, defines
 - (A) variance

(B) mean

(C) pdf

(D) co-variance

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2 a. Define Signal. Give detailed classification of various signals with example. (6)

b.
$$x[n] = \begin{cases} 0 & \text{if } n < 2 \\ 2n - 4 & \text{if } 2 \le n < 4 \\ 4 - n & \text{if } 4 \le n \end{cases}$$

(i) Sketch x(n).

- (ii) Sketch y(n) = x(n-1). (4)
- c. The response of an LTI system to a step input, x(t) = u(t) is $y(t) = (1-e^{-2t})u(t)$. What is the response to an input of x(t) = 2u(t) 4u(t-1)? (6)

Q.3 a.

Determine the Fourier series representation for the above signal. (10)

- b. Consider an LTI system with impulse response $h(n) = a^n u(n)$, -1 < a < 1, with the input signal $x(n) = \cos(2 \pi n / N)$. Determine y(n). (6)
- Q.4 a. State and explain convergence conditions for continuous—time Fourier transform. (3)

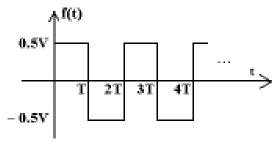
Code: AE06/AC04/AT04

Subject: SIGNALS & 3

b. Consider a stable LTI system characterized by the differential equation

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} + 5y(t) = x(t)$$

Determine (i) frequency response and (ii) impulse response. (5)


- c. State and prove Parseval's theorem for continuous time periodic signal. (8)
- Q.5 a. Determine the discrete –time Fourier transform of unit–step sequence x(n) = u(n). Comments on the result obtained. (8)
 - b. For the signal $x(n) = \cos \omega_{0}n$ with $\omega_{0} = 2\pi/5$, obtain and plot $X(e^{j\omega})$ (4)
 - c. Draw low-pass filter magnitude characteristics with all necessary tolerance limits. (4)
- Q.6 a. Describe discrete time processing of continuous- time signals in detail, with necessary block diagrams.
 - b. For the first-order LTI system described by y(n)- ay(n-1) = x(n) with |a| < 0, obtain magnitude and phase of the frequency response. (8)
- **Q.7** a. Obtain z- transform for
 - (i) $x_1(n) = (1/3)^n [\sin (\pi n / 4)] u(n)$
 - (ii) $x_2(n) = -a^n u(-n-1)$

Plot pole –zero diagram and state ROC for both.

b. State initial value theorem for Z-transform. List its utility. For the sequence $x(n) = 7 (1/3)^n u(n) - 6 (1/2)^n u(n)$, find x(0) using initial value therom. (8)

Q.8 a. For signal $x(t) = e^{-at}$ u(t), determine (i) Fourier transform (ii) Laplace transform. If a = 0, whether both transforms exit? If, yes determine the same. (8)

b.

Obtain the Laplace transform of the square wave given in above figure. (8)

- **0.9** a. Write short note on:-
 - (i) Gaussian random variable.
- (ii) Joint probability.

(8)

(8)

b. The pdf of random variable x is given by $f_x(x)=k$, $a\leq x\leq b$ and $f_x(x)=0$, otherwise.

Determine (i) the value of constant k.