Subject: MATERIALS AND PROCESS

ROLL NO.

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

Code: AE04

DECEMBER 2011

OCESS Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The interplanar spacing of the first reflecting plane in an FCC crystal is

(A) $a\sqrt{3}$	(B) $a/\sqrt{3}$
(C) $a/\sqrt{2}$	(D) a

b. A cation vacancy and an anion vacancy in a crystal of a type AB is called

(A) Schottky defect	(B) Frenkel defect
(C) Pair of vacancies	(D) none of these

c. The degree of freedom when ice, water and water vapour co-exist in equilibrium is

(A) 1	(B) triple point
(C) 0	(D) -1

d. Fick's second law for unidirectional flow under non steady state conditions is

(A) $\frac{\partial c}{\partial t} = -D \frac{\partial^2 c}{\partial x^2}$	(B) $\frac{\partial c}{\partial t} = D \frac{\partial^2 d}{\partial x^2}$	
(C) $\frac{\partial c}{\partial t} = -D \frac{\partial c}{\partial x}$	(D) $\frac{\partial c}{\partial t} = D \frac{\partial c}{\partial x}$	

e. The probability of occupation of an energy level E, when $E - E_F = KT$, is given by

(A)	0.73	(B) 0.63
(C)	0.27	(D) 0.5

AE04 / DEC _ 2011

AMIETE - ET (OI D CCHEME)

4

Code:	AE04 Subject:	MATERIALS AND PROCESS
f.	The energy gap in diamond is	201
	(A) 5.4 ev	(B) 2-3 ev
	(C) 1.1 ev	(D) 0.08 ev
g.	Among the common dielectric mapsessed by	ROLL NO. MATERIALS AND PROCESS (B) 2-3 ev (D) 0.08 ev aterials, the highest dielectric strength is
	(A) Mica	(B) Transformer oil
	(C) PVC	(D) Polyethylene
h.	The temperature of the antiferromag	gnetic-to-paramagnetic transition is called
	(A) Antiferromagnetic Curie temp(C) Neel temp	(B) Curie-Weiss temp(D) Debye temp
i.	The grown single crystal generally	contains
	(A) tilt boundaries	
	(B) twin boundaries	
	(C) grain boundaries	
	(D) dislocation loops due to vacance	y condensation
j.	The magnetic moment of a ferric io	n in nickel-zinc ferrite is
	(A) 5	(B) 0
	(C) 2.2	(D) depends on Zn %

UI.		Ques
	Each question carries 16 marks.	

Q.2	a.	Draw the curve between potential energy and distance of separation between atoms in bonds. Discuss effect of temperature on mean spacing between atoms. (8)
	b.	Discuss triangular coordination of anions around a cation in ionic bonds. Find critical radius ratio for triangular coordinations. (8)
Q.3	a.	What is edge dislocation? Show that the Burgers vector is parallel to the screw dislocation line. (8)
	b.	Explain Lever rule & Gibbs phase rule with example. (8)
Q.4	a.	Explain interstitial and vacancy diffusion based on atomic model of diffusion. (8)
	b.	Differentiate between Hardening and Tempering, based on change in mechanical properties, process and applications. (8)
A E 0 4	ח /	

Cod	le:	A	E()4
-----	-----	---	----	----

ROLL NO.

studentBounty.com 0.5 a. Differentiate between HOT & COLD working and discuss their effects on mechanical properties of metals. b. Explain Czochralski process of single crystal growth. **Q.6** a. Discuss the properties of conducting materials used for electrical contacts and heating elements. (8) b. Calculate the energy difference between the $n_x = n_y = n_z = 1$ level and the next higher energy level for free electrons in a solid cube of 10 mm dimension. (8) a. Draw Fermi level diagram of P-N junction in forward and reverse bias. 0.7 Write the applications of junction transistor. (8) b. Compare N-type & P-type semi conductors. Write any three elements that you would add to pure crystal of Si to make it (i) N-type and (ii) P-type extrinsic semiconductors. (8) a. What is ionic polarizability? Explain effect of temperature and frequency **Q.8** over polarization. (8) b. Explain concept of Ferroelectricity and piezoelectricity. Write the properties and applications of piezoelectric materials. (8) 0.9 a. The saturation magnetization of BCC iron is 1750 KA/m. Calculate the net magnetic moment per iron atom in the crystal. (8) b. What are hard magnetic materials? Write properties and applications of

alnico and ferrites.

AMIETE - ET (OLD SCHEME)

(8)