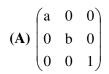
## AMIETE - CS/IT (NEW SCHEME)

Time: 3 Hours DECEMBER 2011

Max. Marks: 100

**NOTE:** There are 9 Questions in all.


- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

| <ul> <li>a. The look up table technique the number of intensity (A) decreases (C) removes (D) gives no effect on</li> <li>b. Suppose (x<sub>1</sub>,y<sub>1</sub>),(x<sub>2</sub>,y<sub>2</sub>),,(x<sub>n</sub>,y<sub>n</sub>) are n vertices of a close (x,y) is a point such that x is the less than the minimum of {x<sub>1</sub> the point (x,y) lies the polygon</li> <li>(A) Inside (B) outside (C) on (D) as vertex of</li> <li>c. If two bits are zeros and two bits are ones in a code of a sub-Sutherland line clipping algorithm then the sub region is</li> </ul> | <br>ny required data not explicitly given, may be suitably assumed and stated.  Choose the correct or the best alternative in the following: (2×10)                                                         |                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| <ul> <li>(C) removes</li> <li>(D) gives no effect on</li> <li>b. Suppose (x<sub>1</sub>,y<sub>1</sub>),(x<sub>2</sub>,y<sub>2</sub>),,(x<sub>n</sub>,y<sub>n</sub>) are n vertices of a close (x,y) is a point such that x is the less than the minimum of {x<sub>1</sub> the point (x,y) liesthe polygon</li> <li>(A) Inside</li> <li>(B) outside</li> <li>(C) on</li> <li>(D) as vertex of</li> <li>c. If two bits are zeros and two bits are ones in a code of a sub-Sutherland line clipping algorithm then the sub region is</li> </ul>                                   | a. The look up table technique the number of intensity levels.                                                                                                                                              |                                                               |  |  |
| <ul> <li>(x,y) is a point such that x is the less than the minimum of {x} the point (x,y) liesthe polygon</li> <li>(A) Inside (B) outside (C) on (D) as vertex of</li> <li>c. If two bits are zeros and two bits are ones in a code of a sub-Sutherland line clipping algorithm then the sub region is</li> </ul>                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             | · ·                                                           |  |  |
| <ul><li>(C) on</li><li>(D) as vertex of</li><li>c. If two bits are zeros and two bits are ones in a code of a sub-Sutherland line clipping algorithm then the sub region is</li></ul>                                                                                                                                                                                                                                                                                                                                                                                          | b. Suppose $(x_1,y_1),(x_2,y_2),,(x_n,y_n)$ are n vertices of a closed polygon and $(x,y)$ is a point such that x is the less than the minimum of $\{x_1,x_2,,x_n\}$ then the point $(x,y)$ liesthe polygon |                                                               |  |  |
| Sutherland line clipping algorithm then the sub region is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                             | ` '                                                           |  |  |
| (A) ' (D) '111 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c. If two bits are zeros and two bits are ones in a code of a sub-region in Cohen-Sutherland line clipping algorithm then the sub region is                                                                 |                                                               |  |  |
| (A) corner region (B) middle region (C) central region (D) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>(A) corner region</li><li>(C) central region</li></ul>                                                                                                                                              | <ul><li>(B) middle region</li><li>(D) none of these</li></ul> |  |  |

- d. The line segment should be considered for clipping if
  - (A) both endpoint codes are 0000.
  - **(B)** the logical AND of the end point codes is not 0000.
  - (C) the logical AND of the end point codes is 0000.
  - (**D**) the logical OR of the end point codes is 0000.
- e. If we rotate the point P = (3,1,4) through  $30^0$  about the y-axis, then
  - (A) the x-coordinate of the point is not altered.
  - **(B)** the y-coordinate of the point is not altered.
  - (C) the z-coordinate of the point is not altered.
  - (**D**) none of the above

## Code: AC60/AT60 Subject: COMPUTER GRAPHICS

f. The two dimensional matrix transformation for scaling with "a" units along axis and "b" units along y-axis is ......



$$(B) \begin{pmatrix}
-a & 0 & 0 \\
0 & -b & 0 \\
0 & 0 & 1
\end{pmatrix}$$

(C) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & -b & 1 \end{pmatrix}$$

$$(D) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & a & 1 \end{pmatrix}$$

- g. Parallel projection is characterized by the
  - (A) view plane alone
  - (B) direction of projection and the view plane
  - (C) center of projection and the view plane
  - (**D**) center of projection alone
- h. The z-buffer algorithm
  - (A) Finds the largest depth value z
  - (B) Finds the smallest depth value z
  - (C) Finds the average of the frame buffer
  - **(D)** Calculates the intensity at (x,y)
- i. The term refers to the plotting of a point in a location, other than its computed location in order to fit the point into the raster
  - (A) Resolutions

(B) Overscan

(C) Aliasing

- (**D**) none of these
- j. Two curves are said to be connected at a point with first order continuity if
  - (A) both curves simply meet at that point
  - (B) the tangents to both the curves at that point are equal
  - (C) the curvatures of both the curves at that point are equal
  - (D) both the curves are of first order

## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Explain the operation of a color video monitor display system.
  - b. Explain any four types of physical input devices. (8)
- Q.3 a. Explain the line drawing using moveto() and lineto(). (8)

**(8)** 

## **Subject: COMPUTER GRAPHICS Code: AC60/AT60**

- SHIIDENHOUNKY.COM Transform a point P(40,30) given in a window (10,100,10,60) corresponding to  $(w_1, w_r, w_h, w_t)$  in world coordinate system to a viewport (30,150,30,90) $(v_1, v_r, v_h, v_t)$  on screen.
- 0.4 a. Let R be the rectangular window whose lower left-hand corner is at L(-3,1) and upper right-hand corner is at R(2,6). Clip the line segments AB and CD where A(-4,2); B(-1,7); C(-1,5) and D(3,8), using cohen-sutherland line clipping algorithm. **(8)** 
  - b. Write the pseudocode for cyrus-beck clipper for a convex polygon, 2-D case. **(8)**
- **Q.5** a. Develop the necessary transformation to magnify the triangle with vertices A(0,0), B(1,1) and C(5,2) to twice its size while keeping C(5,2) fixed.
  - b. Work out the combined transformation matrix associated with 45° rotation about x-axis, followed by a 30° rotation about y-axis, followed by a 60° rotation about z-axis?
- 0.6 a. Describe the properties of meshes used for solid modelling. **(8)** 
  - b. Distinguish between the perspective and parallel projections. Describe the oblique projections. **(8)**
- **Q.7** a. Distinguish between the flat shading and the smooth shading. Explain the two meshes rendered using flat shading. **(8)** 
  - b. What do you understand by the combining light contribution? Explain. **(8)**
- **Q.8** Describe the supersampling technique of antialiasing. (8)
  - b. Describe briefly a technique for filling polygon defined regions. (8)
- 0.9 a. Given 4 control point  $P_0, P_1, P_2, P_3$  express the Bezier curve parametric equation in terms of t. Show that the starting slope of the curve is parallel to line  $P_0, P_1$ .
  - What do you understand by converse Hull of a Bezier curve? Take 4 points and draw the converse Hull. **(8)**
  - b. A Bezier curve is specified by following control points:  $P_0(0,0), P_1(10,40), P_2(30,40), P_3(50,0)$ . Work out the coordinates of the point corresponding to t = 0.3 and t = 1.
    - Draw a rough plot of the Bezier curve for the control points specified above.

**(8)**