NOTE：There are 9 Questions in all．
－Please write your Roll No．at the space provided on each page immediately after receiving the Question Paper．
－Question 1 is compulsory and carries 20 marks．Answer to Q． 1 must be written in the space provided for it in the answer book supplied and nowhere else．
－The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination．
－Out of the remaining EIGHT Questions answer any FIVE Questions．Each question carries 16 marks．
－Any required data not explicitly given，may be suitably assumed and stated．
Q． 1 Choose the correct or the best alternative in the following：
a．For solving water jug problem breadth－first search would work better than depth first search．
（A）True
（B）False
（C）Both are equally good
（D）Nothing can be said
b．Which of the following is simplest of the approaches：
（A）means－ends analysis
（B）generate and test
（C）hill climbing
（D）best first search
c．Fairly good way of dealing with local maxima is
（A）backtrack to some earlier node and try going in a different direction
（B）make a big jump in some direction to try to get to a new section of search
（C）apply two or more rules before doing the test
（D）none of these
d．Clause form of $(P \vee Q)->R$ is
（A）$\sim P \vee R$
（B）$\sim \mathrm{Q} \vee \mathrm{R}$
（C） $\mathrm{P} \vee \mathrm{Q} \vee \mathrm{R}$
（D）（A）and（B）both
e．Resolution theorem is
（A）Sound
（B）Complete
（C）Neither sound nor complete
（D）Sound and complete both
f．Let $\mathrm{P}(\mathrm{G} \wedge \mathrm{T})=1 / 3$ and $\mathrm{P}(\mathrm{T})=2 / 3$ ，then $\mathrm{P}(\mathrm{G} / \mathrm{T})=$
（A） $2 / 9$
（B） $1 / 3$
（C） $1 / 2$
（D） $2 / 3$
g．A Computer program that performs a task normally done by a human expert is
（A）Neural Network
（B）Semantic Network
（C）Expert System
（D）None of these
h．Learning by analogy involves learning
（A）from a single training instance by explaining it．
（B）from a teacher or a knowledge source．
（C）new concepts through use of similar concepts and their solutions．
（D）None of these．
i．Momentum term in Backpropagation learning is used to increase the
（A）speed of learning
（B）convergence
（C）weight adaptation
（D）none of these．
j．If laundry quantity is＂large＂$\left(\mu_{\mathrm{A}}=0.6\right)$ and fabric is＂hard＂$\left(\mu_{\mathrm{A}}=0.8\right)$ then washing cycle is＂strong＂．What is membership function of＂strong＂？
（A） 0.8
（B） 0.7
（C） 0.6
（D） 0

Answer any FIVE Questions out of EIGHT Questions．
 Each question carries 16 marks．

Q． 2
a．What do you understand by constraint satisfaction problems？Illustrate with example．
b．Consider a finite tree of depth d and branching factor b ．（A tree consisting of only root node has depth zero；a tree consisting of a root node and its successors has depth 1 ；etc）．Suppose the shallowest goal node is at depth g $\leq d$ ．What is the minimum and maximum number of nodes that might be generated by a depth first search？

Q． 3 Given below a game tree：

(i) If the first player is a maximizing player, then what move should be chosen under min-max procedure?
(ii) What nodes would not be examined using $\alpha-\beta$ pruning procedure?
Q. $4 \quad$ a. \quad Show that $(\neg \mathrm{Q}(\mathrm{c}) \Rightarrow \neg \mathrm{P}(\mathrm{c}))$ is a logical consequence of $(\forall \mathrm{X})((\mathrm{P}(\mathrm{X}) \Rightarrow$ $Q(X)) \wedge R(X)$ using resolution refutation method.
b. Draw semantic network of the following sentence

Yesterday Kavita flew from New Delhi to Bangalore.
Q. 5 a. You are given the following PROLOG program
vehicle(X):- heavy(X).
$\operatorname{light}(X):-\operatorname{car}(X)$.
heavy (X) :- $\operatorname{bus}(X)$.
heavy (X) :- $\operatorname{truck}(X)$.
car(zen).
car(swift).
bus(tata).
bus(ashok).
truck(mahindra).
What will be the output of the query ?- vehicle(X) in each of the cases if the following rule is added in the beginning of the above program.
(i) vehicle $(\mathrm{X}):-\operatorname{light}(\mathrm{X})$.
(ii) vehicle $(\mathrm{X}):-\operatorname{light}(\mathrm{X})$,!.
(iii) vehicle(X):- !, light(X).
(iv) vehicle $(X):-\operatorname{light}(X)$,fail.
(v) vehicle(X):- $\operatorname{light}(X)$,fail,!.
(vi) vehicle(X):- $\operatorname{light}(\mathrm{X})$,!,fail.
b. Write a Prolog program to merge two sorted lists. i.e. $\operatorname{merge}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right)$.
e.g. $\mathrm{L}_{1}=[1,5,6], \mathrm{L}_{2}=[2,3,8], \mathrm{L}_{3}=[1,2,3,5,6,8]$.
Q. 6 a. How is A* search algorithm different from depth first algorithm. Explain the conditions under which A^{*} will give optimal solution.
b. Design a perceptron for AND function of two inputs. Define appropriate weights and bias in the range $[-1,1]$ and use step activation function where if weighted sum is strictly greater than 0 then output 1 and if it is strictly less than 0 then output 0 .
Q. 7 a. Name the various Heuristics used for planning using Constraint Posting.
b. Suppose that we are given the probabilities of some events such as 'Sun is bright today' as P (sunny_today) $=0.6$ and the probability of the same event occurring tomorrow as P (sunny_tomorrow / sunny_today) $=0.8$ and $\mathrm{P}($ sunny_tomorrow $/ \sim$ sunny_today $)=0.4$. Compute the following joint probabilities. Let us represent Sun is bright today by A and Sun will bright tomorrow by B.
(i) $\mathrm{P}(\mathrm{B}, \mathrm{A})$
(ii) $\mathrm{P}(\sim \mathrm{B}, \mathrm{A})$
(iii) $\mathrm{P}(\mathrm{B}, \sim \mathrm{A})$
(iv) $\mathrm{P}(\sim \mathrm{B}, \sim \mathrm{A})$
Q. 8 a. Give two examples of each of the following and briefly describe each model
(i) Supervised Learning
(ii) Unsupervised Learning
b. Discuss the architecture of Rule Based Expert System.
Q. 9 a. Suppose that there are n and m number of two unary predicates p and q respectively in prolog program. How many times will prolog interpreter backtracks (including shallow and deep both) for each of the following queries?
(i) ? $p(\mathrm{X}), q(\mathrm{Y})$
(ii) ? $p(\mathrm{X}),!, q(\mathrm{Y})$
b. Explain ATN for parsing. How is it different than RTN?

