NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q .} 1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Let $A=\{1,2,3,4,5\}$. Which of the following sets is not equal to A ?
(A) $\{1,2,3,4,5\}$
(B) $\left\{x \mid x\right.$ is a real number and $\left.x^{2} \leq 25\right\}$
(C) $\{5,4,3,2,1\}$
(D) $\{2,3,4\}$
b. The contrapositive of the statement "If I am not President, then I will walk to work" is
(A) If I do not walk to work, then I am President.
(B) If I am President, then I will not walk to work
(C) If I walk to work, then I am not President.
(D) If I walk to work, then I am President.
c. If no letter or digit can be repeated, how many license plates having 2 letters followed by 4 digits can be manufactured?
(A) $6,760,000$
(B) $3,276,000$
(C) 3,72600
(D) 327600
d. How many edges are there in a graph with 10 vertices, each of degree 6?
(A) 60
(B) 30
(C) 20
(D) 100
e. To make $R=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,1),(3,2)]$ a binary equivalence relation on the set $A=\{1,2,3,4,5\}$, choose the set that one needs to add to R.
(A) $\{(4,4),(5,5)\}$
(B) $\{(5,5),(1,3)\}$
(C) $\{(4,4),(5,5),(1,3)\}$
(D) $\{(4,4),(1,2,3)\}$
f. Consider a poset (A, R), where A is a finite set and R is a relation on the set A. Then, the greatest element of A is
(A) any $a \in A$ such that $x R A, \forall x \in A$
(B) any $a \in A$ such that $a R x, \forall x \in A$
(C) the same as the upperbound of a subset B of A
(D) the same as the lowerbound of a subset B of A
g. Domination law in boolean attributes is
(A) $x \cdot 0=0$
(B) $x+x=x$
(C) $x \cdot 1=x$
(D) $x y=y x$
h. A rooted tree is a full m-ary tree, if
(A) every external vertex has at most m children.
(B) every internal vertex has at most m children.
(C) every external vertex has exactly m children.
(D) every internal vertex has exactlym children.
i. A phase structure grammar Gis defined to be a
(A) 3 tuple $(\mathrm{V}, \mathrm{S}, \rightarrow), \mathrm{V} \subseteq \mathrm{S}$ and \rightarrow is a finite relation on V^{*}
(B) 4 tuple $\left(V, S, v_{o}, \rightarrow\right) V$ is a finite set, $\mathrm{S} \subseteq \mathrm{V}, \mathrm{v}_{0} \in \mathrm{~V}-\mathrm{S}, \rightarrow$ is a finite relation on V^{*}
(C) 5 tuple $\left(\mathrm{V}, \mathrm{S}, \mathrm{v}_{\mathrm{O}}, \rightarrow, \leftarrow\right), V$ is a finite set, $\mathrm{S} \subseteq \mathrm{V}, \mathrm{v}_{\mathrm{O}} \in \mathrm{S}-\mathrm{V}, \rightarrow$ and \leftarrow are finite relations on V^{*}
(D) 4 tuple $\left(V, S, v_{e}, \rightarrow\right), V$ is an infinite set, $\mathrm{V} \subseteq \mathrm{S}, \mathrm{v}_{0} \in \mathrm{~V}-\mathrm{S}, \rightarrow$ is a finite relation on V^{*}
j. The explicit version of the recursive relation $a_{n}=2 \times 5, a_{n-1}, a_{1}=4$, is
(A) $\mathrm{a}_{\mathrm{n}}=4 \times 10^{\mathrm{n}}$
(B) $a_{n}=10^{n}$
(C) $a_{n}=4^{n}$
(D) $\mathrm{a}_{\mathrm{n}}=(4 \times 10)^{\mathrm{n}}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. A survey has been taken on the methods of commuter travel. Each respondent was asked to check BUS, TRAIN or AUTOMOBILE as a major method of traveling to work. More than one answer was permitted. The results were reported as follows: BUS: 30 people; TRAIN: 35 people; AUTOMOBILE: 100 people; BUS and TRAIN: 15 people; BUS and AUTOMOBILE: 15 people; TRAIN and AUTOMOBILE: 20 people; and all the three methods, 5 people. How many people completed a survey form?
b. The Harmonic numbers $H_{j}, j=1,2,3, \cdots$ is defined by $H_{j}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{j}$. Use, mathematical induction to show that $H_{2} \mathrm{n} \geq 1+\mathrm{n} / 2$.
c. A label identifier for a computer program consists of one letter followed by 3 digits. If repetitions are allowed, how many distinct label identifiers are possible?
Q. 3 a. Derive the explicit formula for the recursive relation: $a_{n}=4 a_{n-1}+5 a_{n-2}, a_{1}=2, a_{2}=6$.
b. Show that if any 8 positive integers are chosen, two of them will have the same remainder when divided by 7 .
c. Define Euler circuit and Euler path. Which of the following graphs have an Euler circuit and Euler path:

Q. 4 a. Draw a digraph for each of the following relations:
(i) Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{d}),(\mathrm{a}, \mathrm{d}),(\mathrm{d}, \mathrm{a}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{c})\}$
(ii) Let $\mathrm{A}=\{1,2,3,4,5,6,7,8\}$ and let ${ }^{\mathrm{x}} \mathrm{R}_{\mathrm{Y}}$, wherever Y is divisible by x
(iii) Determine which of the relations are reflexive, transitive, symmetric and antisymmetric.
b. Prove that a graph G is a tree iff G has no cycles and $|E|=|V|-1$.
Q. 5 a. Let $S=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and A is the power set of S. Draw the Hasse diagram of the poset A with the partial order \subseteq (set inclusion).
b. Simplify the following boolean expressions using Karnaugh maps.
(i) $x y \bar{z}\|x \bar{y} \bar{z}\| \bar{x} y z \| \bar{x} \bar{y} \bar{z}$
(ii) $x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

Q. 6 a. Write the algorithm for Huffman coding. Encode the following symbols with the frequencies listed: $\mathrm{A}=0.25, \mathrm{~B}=0.20, \mathrm{C}=0.15, \mathrm{D}=0.12$, $\mathrm{E}=0.10, \mathrm{~F}=0.18$.
b. Write the algorithms for In-order and Post-order traversals.
Q. 7 a. Write the syntax diagrams for a letter and an identifier.
b. Write Kruskal's algorithm for computing a minimum spanning tree of a weighted graph.
Q. 8 a. Prove that 2 divides $n^{2}+n$, whenever n is a positive integer.
b. Give the recursive definition for the sequence $\left\{a_{n}\right\}, n=1,2,3 \ldots$ and
(i) $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}+1$ and
(ii) $\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}$.
Q. 9 a. Design an automaton which accepts only even number of 0's and even number of 1 's.
b. Choose 4 cards at random from a standard 52 -card deck. What is the probability that 4 kings will be chosen?

