Subject: LOGIC DESIGN

Time: 3 Hours
DECEMBER 2010
Max. Marks: 100
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. A quantity having continuous values is called a \qquad
(A) digital quantity
(B) analog quantity
(C) binary quantity
(D) natural quantity
b. The maximum count of a 2 digit and 3 digits Hex No. is \qquad
(A) FFFH \& FFH
(B) FFH \& FFFH
(C) FFH \& FFFFH
(D) AA \& FFF
c. The gate ideally suited for bit comparison is \qquad
(A) Two input EX-OR gate
(B) Two input EX-NOR gate
(C) NOR gate
(D) NAND gate
d. A maximum positive and negative numbers which can be represented in 2's complement form using n bits is \qquad
(A) $+\left(2^{\mathrm{n}-1}-1\right),-\left(2^{\mathrm{n}-1}-1\right)$
(B) $+\left(2^{\mathrm{n}-1}-1\right),-2^{\mathrm{n}-1}$
(C) $+2^{\mathrm{n}-1},-2^{\mathrm{n}-1}$
(D) $+2^{\mathrm{n}-1},-\left(2^{\mathrm{n}-1}+1\right)$
e. ASCII code is basically a \qquad
(A) 7 bit code
(B) 12 bit code
(C) 4 bit code
(D) 6 bit code
f. 2 numbers can be adjacent only if they differ by \qquad
(A) $2^{\text {n }}$
(B) $2 \times n$
(C) 4
(D) n^{2}
g. The dual of a boolean function is obtained by \qquad
(A) interchanging all 0's \& 1's only
(B) changing all 0's to 1's only
(C) changing all 1's to 0 's only
(D) inter changing (i) all 0 's \& 1's (ii) ' + ' and '.' signs.
h. A combinational circuit \qquad
(A) never contains memory elements
(B) always contains memory elements
(C) may sometimes contain memory elements
(D) contain only memory elements
i. How many 4 bit word can be stored in 512 bit ROM
(A) 512
(B) 128
(C) 2048
(D) 64
j. Number of Flip-flops required to construct a MOD 64 counter is \qquad
(A) 64
(B) 4
(C) 33
(D) 6

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Explain with a block diagram, the functional parts of a digital computer (2+6)
b. Do the conversions for the following:
(i) $(0.3125)_{10}$ to Binary
(ii) Hex equivalent of $(11101101111010)_{2}$
(iii) $(0.325)_{8}$ to decimal
(iv) (100 111010$)_{2}$ to octal
Q. 3 a. Solve the following:
(i) $\overline{\overline{X X} \overline{\bar{Y}}+X Y Z}+X(Y+X \bar{Y})$
(ii) Write the truth table for the circuit given in Fig. 1 indicating intermediate variables and also the boolean expression for the output.
(2+2)

Fig. 1
b. Simplify the given boolean function using 4 variable k map in SOP and PO forms. Also realize in the simplified expressions using NAND and NOR gates.
$\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(0,1,2,3,10,11,12,13,14,15)$.
Q. 4 a. Explain in detail, the working of an edge triggered JK Flip-Flop.
$(4+2+2)$
b. Explain the operating characteristics of Flip-Flops.
Q. 5 a. Describe a n bit binary ripple carry adder showing typical carry propagation delays.
(4+4)
b. Subtract the following numbers using 2's complement method and also show direct subtraction.
(i) 11100 from 10011 .
(ii) Add +128 and -130
c. (i) Add 647 and 482 in BCD code
Q. 6 a. Describe the working of asynchronous decade counter.
b. Design a Mod 3 synchronous counter using JK Flip-Flops.
$(2+2+2+2)$
Q. 7 a. What is a multiplexer? Draw the diagram of a 8:1 multiplexer with expressions and truthtable.
b. Draw and explain BCD to 7 segment decoder.
Q. 8 a. Explain the working of a shift left \& shift right register.
b. Explain in detail, the operation of Johnson counter.
Q. 9 a. Define the following terms:
(i) Static memory device
(ii) Dynamic memory device
(iii) Internal memory
(iv) External memory
$(4 \times 2=8)$
b. What is RAM? What are its various types and explain each type.

