	Subject: NET	WORKS ANI	O TRANSMISSION I	LINES	
Time: 3 Hours		DECEN	IBER 2010	: DE57 LINES Max. Marks: 100	
 Question The of of question 	e space provided for it the answer sheet for the the commencement of it of the remaining testion carries 16 mark	y and carries 20 t in the answer 1 e Q.1 will be col f the examination EIGHT Questinks.	ons, answer any FIVE	after half an hour Questions. Each	
• AI Q.1	• •		nay be suitably assumed native in the following:	<u>and stated.</u> (2×10)	
C	a. If one of the resistors in a parallel circuit is removed, what happens to the total resistance?				
	(A) decreases(C) remains constant	ant	(B) increases(D) exactly doubles		
	b. The voltage V is a	b. The voltage V is always equal to (Fig.1) $I \rightarrow I $			
	 (A) 9V (B) 5V (C) 1V (D) depends on the 	ne current I	V 	2Ω + 5V	
	c. Superposition theorem is valid only for				
	(A) linear circuits(C) both linear and	d non linear	(B) non linear circuits(D) neither for linear no circuits	or for non-linear	
	d. The reciprocity theorem is applicable to				
	(A) linear networks only(C) linear bilateral networks only		(B) bilateral networks(D) neither of the three		
	e. What is the total reactance of a series RLC circuit at resonance?				
	(A) equal to X _L (C) equal to R		(B) equal to X _C (D) zero		
	f. In a series RLC circuit operating below the resonant frequency, the current, if the applied voltage is v_s ,				
	(A) I leads v_s		(B) I lags behind v_s		
	(C) I is in phase w	vith v _s	(D) I is reversed		

0

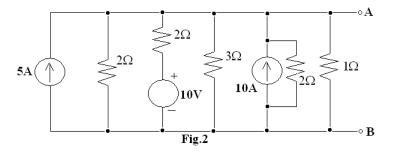
1

DiDIETE - ET (NEW COMEME)

- g. Mutual inductance is a property associated with
 - (A) only one coil (B) two or more coils
 - (C) 2 or more coils with magnetic coupling
 - (D) two or more coils placed far apart
- StudentBounty.com h. A 2-port Network is a network inside a black box and the network has only

(A) 2 terminals	(B) 2 pairs of accessible terminals
(C) 2 pairs of ports	(D) one terminal on each side of the black
	box

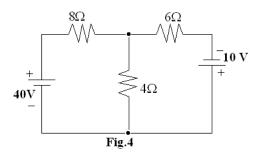
i. For 2 port network to be reciprocal, must satisfy the conditons


(A) $Z_{11} = Z_{22}$	(B) $Y_{21} = Y_{22}$
(C) $h_{21} = -h_{12}$	$(\mathbf{D}) \operatorname{AD} - \operatorname{BC} = 0$

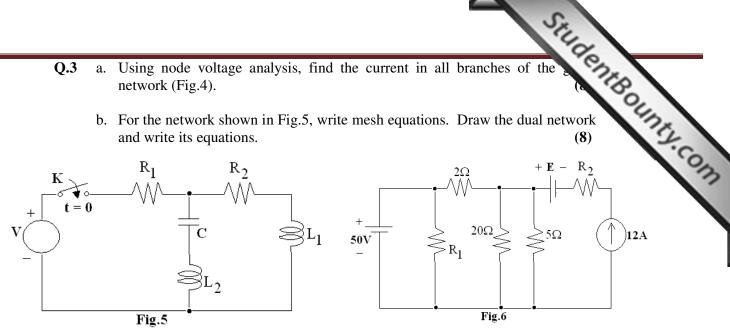
j. The propogation constant of a symmetrical T & π sections are the same

(A) True	(B) False
(C) Reverse of each other	(D) Complex conjugates


Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2 a. Using source transformations, convert the given circuit in Fig.2 into an equivalent circuit with a single voltage source, single resistance. (8)

urrents i₁ (8)



DiDIETE - ET (NEW SCHEME)

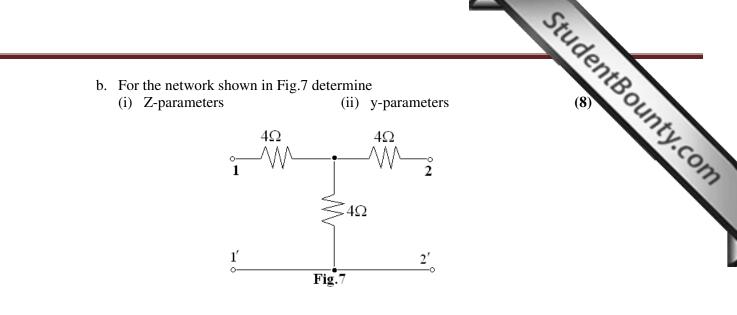
DE57 / DEC _ 2010

າ

- 0.3 Using node voltage analysis, find the current in all branches of the a. network (Fig.4).
 - b. For the network shown in Fig.5, write mesh equations. Draw the dual network and write its equations.

mine the current in 2032 resistor using superposition theorem voltage source E can have any value. (8)

- b. State
 - (i) maximum power transfer theorem
 - (ii) reciprocity theorem


(8)

- Q.5 a. Derive the equations for quality factor, bandwidth, selectivity of a series R-C circuit. (8)
 - b. A series RLC circuit has a quality factor of 5 at 50 rad/sec. The current flowing through the circuit at resonant is 10 amps and the supply voltage is 100V. The total impedance of the circuit is 20Ω . At $\omega = 40$ rad/sec, find the circuit constants. (8)

a. Find the Laplace transform of the functions **Q.6**

- (i) Unit step function u(t)
- Exponential function $x(t) = e^{at}u(t) |a| < 1$ (ii)
- (iii) Sinusoidal function $x(t) = sin(\omega t)$
- (iv) Hyperbolic sine function $x(t) = \sinh(\omega t)$ (8)
- b. Derive the equation for input impedance of a transmission line, in terms of: Z_{O}, Z_{L} and transmission constant γ and length l. (8)
- **Q.7** a. The characteristic impedance of uniform transmission line is 2039.6 Ω , at f = 800 Hz. At this frequency the propogation constant was found to be $0.054 \angle 87.9^{\circ}$. Determine the values of the constants R, L, G & C. (8)
 - b. Derive the equations for the elements of an m derived T & π sections. (8)
- a. Derive the hybrid parameters & transmission (ABCD) parameters, for a two-**Q.8** port network. (8)

DE57 / DEC - 2010

- **Q.9** Write short notes on any <u>**TWO**</u> of the followings:
 - (i) Symmetrical T attenuator
 - (ii) Symmetrical Lattice attenuator.
 - (iii) Impedance matching of a transmission line.
 - (iv) Thevenin's theorem and Norton's theorem.

(8+8)