Subject: ANALOG ELECTRONICS

Time: 3 Hours

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The most commonly used transistor circuit configuration is
(A) common base
(B) common emitter
(C) common collector
(D) none of these
b. The FET is characterised by
(A) voltage gain
(B) current gain.
(C) power gain
(D) none of these
c. When no signal is applied, the approximate collector efficiency of a class A power amplifier is
(A) 10%
(B) 50%
(C) 25%
(D) 0%.
d. The input impedance of an ideal op-amp is
(A) finite
(B) zero
(C) infinite
(D) unity
e. The slew rate is expressed as
(A) $2 \pi \mathrm{f} \mathrm{Vm} / 10^{6}$
(B) $2 \pi \mathrm{f} 10^{6} / \mathrm{Vm}$
(C) $\operatorname{Vm~} 10^{6} / 2 \pi \mathrm{f}$
(D) $2 \pi \mathrm{f} / \mathrm{Vm} 10^{6}$
f. The instrumentation amplifier having an important feature of
(A) high output impedance
(B) low output impedance
(C) high dc offset voltage
(D) low CMMR
g．In a multivibrator，we have \qquad feedback
（A） 100% positive
（B）both positive and negative
（C）negative
（D）none of these
h．In the diffused resistor method，the sheet resistance Rs can be expressed in terms of surface dimensions L, W and diffused resistor R as
（A）RL／W
（B）RW／L
（C）W／RL
（D）RWL
i．In the common mode configuration，gain is
（A）very high
（B）always infinite
（C）always unity
（D）very low
j．IC 723 General purpose regulator has following limitations
（A）no short circuit protection
（B）output voltage is fixed
（C）no inbuilt thermal protection
（D）none of these

Answer any FIVE Questions out of EIGHT Questions． Each question carries 16 marks．

Q． 2 a．List the basic processes used in the silicon planar technology，and describe the oxidation process in detail．
b．Discuss the various ways for fabricating PNP transistor．
Q． 3 a．Draw an h－parameter equivalent circuit for the CB unbypassed base bias configuration and briefly explain the component of the model．
b．A CE amplifier having the following h parameters $h_{i e}=1100 \Omega, h_{\mathrm{oe}}=25 \mu \mathrm{~S}$ ， $\mathrm{h}_{\mathrm{fe}}=50$ and $\mathrm{h}_{\text {re }}=2.5 \times 10^{-4}$ ，if load and source resistances are $1 \mathrm{~K} \Omega$ ．Find current and voltage gain．

Q． 4 a．Draw the transfer characteristics of a FET and show that the gate source voltage increases with decrease in drain current．
b．A JFET has a drain current of $5 \mathrm{~mA}, \mathrm{I}_{\text {DSs }}$ of 10 mA and gate source cut off Voltage $V_{G S(\text { off })}=-6 \mathrm{~V}$ ，find the values of（i） V_{GS} and（ii） V_{P}

Q． 5 a．Draw the circuit diagram of transformer－coupled class A amplifier and drive an expression for relation between reflected load and the secondary load．
b．The LED in the circuit shown in Fig． 1 is to pass a 20 mA current．The circuit voltages are $\mathrm{Vcc}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=1.9 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{B}}=5 \mathrm{~V}$ ．Determine a suitable resistance value for R_{1} and calculate V_{CE} for Q_{1} ．

Q. 6 a. Describe the \qquad
(i) Input offset voltage
(ii) Input offset current
(iii) Input bias current
(iv) Thermal drift
b. Describe the operation of voltage follower using op-amp. Why it is also called as non-inverting buffer amplifier.
Q. 7 a. Draw the circuit of op-amp integrator and drive an expression for the output voltage.
b. A non inverting summing amplifier having three resistances at non inverting terminal are $R_{1}=R_{2}=R_{3}=1 \mathrm{~K} \Omega$, the feedback resistance is of $2 \mathrm{~K} \Omega$. The input sources connected at the non-inverting terminals are of $\mathrm{V}_{\mathrm{a}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{c}}=-1 \mathrm{~V}$, find the output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$.
Q. 8 a. Describe the operation of astable multivibrator using IC555 as shown in Fig. 2 and find the frequency of oscillation and duty cycle if $\mathrm{R}_{\mathrm{A}}=6.8 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=3.3$ $K \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$.

b. List the important

Describe any one circuit in detail.

Q． 9 a．Draw the connection diagram of three pin adjustable voltage regulator（B 317）．Find the value of input set resistor R_{1} and output set resistor R_{2} ．The output voltage $\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}$ ，output current $\mathrm{I}_{0}=1.0 \mathrm{~A}$ ，adjustment pin current $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$ and the voltage between output and reference terminal is $\mathrm{V}_{\mathrm{R}}=1.25$
$\mathrm{V}, \mathrm{I}_{\mathrm{R} 1}=5 \mathrm{~mA}$ ．
（8）
b．Draw the functional diagram of ADC and list out the names and applications of commonly used ADCs．

