Diplete – Et/CS (NEW SCHEME) – Code: DE51 / D

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

DECEMBER 2010

/ DCS Chillipped and the second secon

 (2×10)

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a.
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$$
 is:
(A) $\frac{1}{2}$ (B) $\frac{1}{3}$
(C) $\frac{1}{4}$ (D) $\frac{2}{3}$

b. If
$$y = (x + 1)(x + 2)$$
, then $\frac{dy}{dx}$ is
(A) $2x - 3$
(B) $3x + 2$
(C) $2x + 3$
(D) $3x - 2$

c.
$$\int x \cot^{-1} x dx$$
 is
(A) $\frac{x^2}{2} \cot^{-1} x + \frac{1}{2} \Big[x - \tan^{-1} x \Big] + C$ (B) $x \cot^{-1} x + 2 \Big[x + \tan^{-1} x \Big] + C$
(C) $x \cot^{-1} x - 2 \Big[x - \tan^{-1} x \Big] + C$ (D) $\frac{x^2}{2} \cot^{-1} x - \frac{1}{2} \Big[x + \tan^{-1} x \Big] + C$

d. If
$$\Delta = \begin{vmatrix} x - 2 & -3 \\ 3x & 2x \end{vmatrix} = 3$$
, then value of x is:
(A) $\frac{1}{3}$, -2
(B) $\frac{1}{2}$, 3
(C) $\frac{1}{3}$, 2
(D) $\frac{1}{2}$, -3

DE51/DC51 / DEC _ 2010

1

		-27	El a
	e. If $3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & zw \end{bmatrix} + \begin{bmatrix} 4 \\ z+w \end{bmatrix}$	$\begin{bmatrix} x+y\\ 3 \end{bmatrix}$ then x, y, z and w is equal to	IE TIBO
	(A) 4,3,2,1 (C) 2,4,1,3	 (B) 1,2,3,4 (D) 3,2,4,1 	anty.co
	f. The order and degree of differentia	al equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = \sin x$ is	SIM
	(A) 0 = 2, D = 1 (C) 0 = 1, D = 1	(B) $0 = 2 D = 2$ (D) $0 = 1, D = 2$	
	g. The eighth term from the beginning in the expansion of $\left(x + \frac{1}{y}\right)^{11}$ is		
	(A) $\frac{333x^4}{y^4}$	(B) $\frac{33x^4}{y^4}$	
	(C) $\frac{30x^4}{y^4}$	(D) $\frac{330x^4}{y^4}$	
	h. The value of $2\cos\frac{\pi}{13} \cdot \cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$ is		
	(A) 1 (C) 0	(B) 2 (D) 3	
	i. The Cartesian co-ordinate $(2,2\sqrt{3})$ is equal to the polar co-ordinate is		
	(A) $4, \pi/3$	(B) $2, \pi/2$	
	(C) $1, \pi/3$	(D) $2, \pi/3$	
	j. The area of a triangle whose vertices are (2,7), (3,-1), (-5,6) is		
	(A) 28 sq. unit	(B) 28.5 sq. unit	
	(C) 25 sq. unit	(D) 25.5 sq. unit	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.			
Q.2	a. If $\sin y = x \sin(a + y)$, then prove	that, $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$.	(8)
	b. Find the maximum and minimum	values of the function $f(x) = \frac{4}{x+2} + x$.	(8)
Q.3	a. Evaluate $\int \sec^3 x dx$.		(8)

b. Evaluate
$$\int_{0}^{\pi/2} \sin 2x \cdot \log(\tan x) dx.$$
 (8)

DE51/DC51 / DEC - 2010

DinIFTE - FT/CC (NEW COHEME)

www.StudentBounty.com Homework Help & Pastpapers

2

Q.4 a. Show that,
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}^{-1}$$
. (8)
b. Using Cramer's method solve the following system of linear equations for x, y, z

b. Using Cramer's method solve the following system of linear equations for x, y, z

$$x + y + z = -1$$

$$x + 2y + 3z = -4$$

$$x + 3y + 4z = -6$$
(8)

Q.5 a. Solve
$$y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$$
. (8)

b. Solve
$$\frac{dy}{dx} = -\frac{x + y \cos x}{1 + \sin x}$$
 (8)

a. Find the term independent of x in the expansion of $\left(3x^2 - \frac{1}{2x^3}\right)^{10}$. (8) **Q.6**

b. The sum of first three terms of a G.P. is 16 and the sum of the next three term is 128. Find the sum of nth terms of G.P. (8)

Q.7 a. Prove that,
$$\frac{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta}{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta} = \tan 6\theta.$$
 (8)

b. In any triangle ABC prove that (8) $\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B} + \frac{c^2 \sin(A-B)}{\sin C} = 0$

Q.8 a. Show that the equation of the straight line through the origin making angle ϕ with line y = mx + b is $\frac{y}{x} = \frac{m \pm \tan \phi}{1 \mp m \tan \phi}$. (8)

- b. If the lines y = 3x+1 and 2y = x+3 are equally inclined to the line y = mx+4. Find the value of m. (8)
- 0.9 a. Find the equation of the ellipse having its Centre at the point (2, -3) and one focus at (3, -3) and one vertex at (4, -3). (8)
 - b. Find the co-ordinate of foci, eccentricity, length of the latus-rectum of the ellipse $25x^2 + 4y^2 = 100$. (8)

DE51/DC51 / DEC = 2010

С