Diplete – ET (OLD SCHEME)

Code: DE09 Time: 3 Hours

StudentBounts.com Subject: DIGITAL ELECTRONIC

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

The decimal equivalent of the fractional binary number 0.1011 is _____ a.

(A)	0.6875	(B) 0.9375
(C)	0.625	(D) 0.0625

b. If the output of a 2 input gate is 1 if and only if its input are equal, it is true for

(A) AND Gate	(B) XOR Gate
(C) OR Gate	(D) XNOR Gate

c. The main advantage of ECL over TTL or CMOS is

- (A) ECL is less expensive.
- (B) ECL consume less power.
- (C) ECL is available in a greater variety of circuit type.
- (**D**) ECL is faster.

d. The input to a full adder are A = 1, B = 1, $C_{in} = 0$, the outputs are _____

(A)	SUM = 1, $Count = 1$.	(B) SUM = 1, Count = 0.
(C)	SUM = 0, Count =1.	(D) SUM = 0 , Count = 0 .

e. A feature that distinguishes the JK flip-flop from the SR flip-flop is the _____

(A) Toggle condition.	(B) Present input.
(C) Type of clock.	(D) Clear input.

- f. To serially shift a byte of data into a shift register, there must be _____
 - (A) One clock pulse. (**B**) One load pulse. (C) Eight clock pulse.
 - (D) One clock pulse for each 1 in the data.

DiDIETE - ET (OLD SCHEME)

4

			STILL
g.	A memory with 256 addresse	es has	SEITTBO
	(A) 256 address lines.(C) 1 address line.	(B) 6 address lines.(D) 8 address lines.	Juney.
h.	The accuracy of a D/A conve	erter is a measure of	·OH
	 (A) The difference between (B) Percentage of full scale (C) (A) and (B) both. (D) neither (A) nor (B). 	the actual output and expected output or maximum output voltage.	voltage.
i.	The most popular A/D conve	erter is the	
	 (A) Successive Approximation (B) Counting Type Converter (C) Parallel Comparator Condition (D) Dual Slope Converter. 	on Converter. r. verter.	
j.	The 2's complement of the n	umber 11001000 is	
	(A) 00110111(C) 01001000	(B) 00110001 (D) 00111000	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Convert the binary number 101101 into gray number. (6)
 - b. Convert the BCD code 10000110 into decimal and hexadecimal number. (4)
 - c. Add the BCD number 0010 0011 and 0001 0111 and convert the result into hexadecimal number. (6)
- Q.3 a. Using a Karnaugh map, convert the following standard SOP expression into a minimum SOP expression.

 $Y = \overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ \overline{B} \ C \ D + \overline{A} \ \overline{B} \ C \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} \ \overline{C} \$

ว

NINETE - ET (NI D COUEME)

- b. What is wired logic? Draw the wired AND connection of DTL gates explain its importance.
- StudentBounty.com **Q.5** Describe the basic operation of Multiplexer and explain its role in a. combinational logic circuit designs.
 - b. Draw the logic symbol and associated truth table of 1 line to 4 line DEMUX and implement its logic circuit. (8)
- **Q.6** a. Design a logic circuit which can work as BCD to Decimal decoder. Explain the functioning of the circuit with the help of Truth Table. (8)
 - Realize the Full Adder circuit with the help of NAND-NAND gates. Draw neat b. logic circuit diagram for Sum and Carry separately. (8)
- **Q.7** a. Convert the operation of RS flip-flop into D Flip-Flop. (4)
 - b. What is Race-around problem? How can you rectify it? (4)
 - Design a decade counter using J-K Flip-Flops. (8) c.
- Explain the operation of Static MOS RAM cell with the help of suitable **Q.8** a. diagram. (8)
 - b. Differentiate the following type of memories
 - (i) RAM vs ROM
 - (ii) SRAM vs DRAM
 - (iii) EPROM vs EEPROM
 - (iv) CACHE vs MAIN MEMORY
- **Q.9** a. Explain the circuit operation of Successive Approximation A/D converter. (8)
 - b. Draw the block Diagram of Analog to Digital converter using Voltage to Frequency conversion and explain its operation in brief. (8)

DEAD / DEC _ 2010

(8)

2