Diplete – ET (OLD SCHEME)

Code: DE07 Time: 3 Hours Subject: NETWORK AND TRANSMISSION LINES

SMISSION LINES Max. Marks: 100

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. A capacitor has a capacitance of 5 μ F, calculate the energy stored in it if a d.c voltage of 100 V is applied across it.

(A) 2.5×10^{-2} joules	(B) 2×10^{-2} joules
(C) 2.5×10^{-3} joules	(D) 0.5×10^{-2} joules

b. If the two capacitance $C_1 \& C_2$ are in parallel then what will be the total capacitance:-

(A)
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

(B) $C = C_1 + C_2$
(C) $C = \frac{C_1 + C_2}{C_1 C_2}$
(D) $C = \frac{C_1 C_2}{C_1 + C_2}$

c. What will be the form factor of a sinusoidal voltage wave:-

(A) 2.22	(B) 1.92
(C) 1.11	(D) 1.10

d. Laplace transform of unit step function is:-

(A)
$$\frac{1}{s}$$
 (B) s
(C) $\frac{1}{s^2}$ (D) $\frac{1}{s^3}$

e. Laplace transform of parabolic function:-

(A)
$$\frac{2}{s^2}$$
 (B) $\frac{2}{s^3}$
(C) $\frac{1}{s^3}$ (D) $\frac{1}{s^2}$

1

DE07/ DEC _ 2010

DiDIETE - ET (OI D COHEME)

www.StudentBounty.com Homework Help & Pastpapers f. Condition of reciprocity in a two port network in Z-parameters:-

$(\mathbf{A}) \ \mathbf{Z}_{12} = \frac{1}{\mathbf{Z}_{12}}$	(B) $Z_{12} = \frac{1}{Z_{21}}$
(C) $Z_{12} = Z_{21}$	$(D) Z_{11} = Z_{22}$

StudentBounty.com g. In a series R-L circuit the current and voltage are given as, $I = cos(314t - 20^\circ)$, $V = 10\cos(314t + 10^\circ)$ then the value of R & L is.

(A) $L = 14.9 \text{ mH}, R = 7.66 \Omega$	(B) L = 15.9 mH, R = 8.66Ω
(C) $L = 10.9 \text{mH}, R = 5.01 \Omega$	(D) $L = 15.3 \text{mH}, R = 8.11 \Omega$

h. Quality factor of a series resonance circuit is:-

(A) $Q = R \sqrt{\frac{L}{C}}$	$(\mathbf{B}) \ \mathbf{Q} = \mathbf{R}\sqrt{\mathbf{L}\mathbf{C}}$
(C) $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	(D) $Q = \frac{1}{R} \sqrt{\frac{C}{L}}$

i. A coil is at resonance at 10 KHz with a capacitor. If the resistance and inductance of the coil are 200Ω and 5H, then Q- factor of the coil is:-

(A) 1520	(B) 1000
(C) 1560	(D) 1570

j. In a simple T- section, a low pass filter has a design impedance R_o . Then $Z_{o\pi}$ at 0.9 f_c is;-

(A) 2.9 R _o	(B) 2.3 R ₀
(C) 2.7 R _o	(D) 2.0 R ₀

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	a. Distinguish between;-	
		(i) unilateral & bilateral e	lements.
		(ii) lumped & Distribute	d elements.
	b.	A Voltage wave is represe	nted by $V = 200 \sin(314 t)$ find
		(i) Maximum value	(ii) RMS value
		(iii) Frequency	(iv) Average value
		(v) Time period	(vi) Instantaneous value at $t = 0.05$ s (8)

DE07/ DEC _ 2010

2

DiDIETE - ET (OLD SCHEME)

www.StudentBounty.com

StudentBounty.com Q.3 a. Define unit impulse function $\delta(t)$, unit step function u(t) and ramp function

b. In the Laplace domain, a function is given by-

$$F(S) = M \left[\frac{(S + \alpha)\sin\theta}{(S + \alpha)^2 + \beta^2} + \frac{\beta\cos\theta}{(S + \alpha)^2 + \beta^2} \right]$$

Show, by initial value theorem

$$\frac{\lim f(t)}{t \to 0} = M \sin \theta$$

a. In the circuit of Fig.1, find the power loss in the 1Ω resistor by Thevenin **Q.4** theorem (8)

b. Find the value of K in the circuit of Fig.2 such that maximum power transfer takes place. What is the amount of this power? (8)

DE07/ DEC _ 2010

DiDIETE - ET (OI D SCHEME)

www.StudentBounty.com Homework Help & Pastpapers

2

- Q.6 A 50 Hz sinusoidal voltage V=311 sin ω t is applied to a RL series circuit a. if the magnitude of resistance is 5Ω and that of inductance is 0.02H.
- StudentBounty.com (i) Calculate the R.M.S or effective value of steady state current and relative phase angle.
 - (ii) obtain the expression for the instantaneous current.
 - (iii) compute the effective magnitude and phase of voltage drop appearing across each circuit element. (8)
 - b. Define the concept of selectivity & bandwidth and their values in terms of Q and ω_0 . (8)
- **Q.7** a. Determine the relationship between the resonance frequency f_0 and the half-power frequency f_1 and f_2 in a series resonating circuit. (8)
 - b. Show that no value of R_{L} in the circuit shown in Fig.4 will make it (8) resonant.

- a. Drive the general equation of a transmission fine enalueuristics impraance **Q.8** (Z_0) (8)
 - b. Define single stub & double stub matching. And also explain the utility of smith chart for transmission lines.. (8)
- a. Define symmetrical and asymmetrical attenuator and give the design **Q.9** parameters of π type attenuator. (8)
 - b Design a T & Π section constant K high pass fitter having cut off freq. of 12 KHz and nominal impedance. (8) $R_{\Omega} = 500\Omega$ also find its characteristics impedance and phase constant at 24 KHz.

DE07/ DEC _ 2010

Λ

DiDIETE - ET (OLD SCHEME)