	AMIELE - I	ET (NEW SCHEME) -	Code: AE74	
	\$	Subject: VLSI DESIGN	Code: AE74 Max. Marks: 10	
[ime:	3 Hours	DECEMBER 2010	Max. Marks: 10	
Qu th Th th Ou ca	e space provided for it in e answer sheet for the Q e commencement of the o it of the remaining EIGH rries 16 marks.	and carries 20 marks. Answer to a the answer book supplied and a.1 will be collected by the invigi	o Q. 1. must be written in nowhere else. lator after half an hour of Questions. Each question	
.1	Choose the correct or	the best alternative in the follow	ving: (2×10	
	a. MOS transistor with	implant channel is called as		
	(A) bipolar (C) BiCMOS	(B) enhancemen(D) depletion	t	
	b. Substrate in nMOS is	S		
	(A) N type(C) polysilicon	(B) P type (D) metal		
	c. Switching speed of M channel.	MOS transistor is inversely proportion	tional toof the	
	(A) square of length	(B) length		
	(C) square root of let		C	
	d. Zpd/Zpu for an nMOS inverter driven by another nMOS inverter is			
	(A) 1/6 (C) 1/8	(B) 1/16 (D) 1/4		
	e. latch up in CMOS ci			
	(A) P-well only(C) P-well and n-well	(B) n-well only (D) twin tup		
	f. Feature size of MOS	transistor is		
	(A) $2\lambda \times 2\lambda$	(B) $\lambda \times \lambda$		

AE74 / DEC _ 2010

1

g. Standard unit capacitance value C_g for $5 \mu m$ MOS transistor is

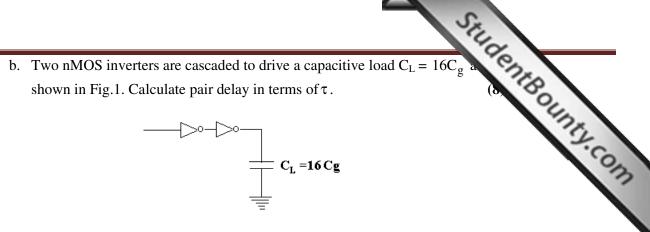
(A) 0.0005 pF	(B) 0.04 pF
(C) 0.01 pF	(D) 0.02 pF

StudentBounty.com h. Overall delay fd for nMOS cascaded inverter driven by large capacitive load is

(A) $3.5 \text{ eN } \tau$	(B) $4.5 \text{ eN } \tau$
(C) $1.5 \text{ eN } \tau$	(D) 2.5 eN τ

i. Gate Area Ag is scaled by _____.

(A) 1/α	(B) 1/β
(C) $1/\alpha^2$	(D) $1/\beta^2$


j. In constant field scaling model _____.

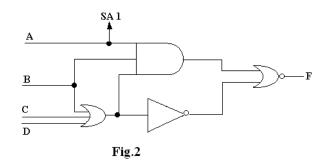
(A) $\alpha = \frac{1}{\beta}$	$(\mathbf{B}) \ \beta = 1$
(C) $\beta = \alpha$	(D) $\alpha = 1$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	With neat diagram explain the working of enhancement mode nMOS transistor. (8)	
	b.	Design the inverter using CMOS logic. Explain its characteristics also.	(8)
Q.3	a.	Derive an expression for I_{ds} in non saturated and saturated region.	(10)
	b.	What is body effect? Explain briefly how threshold voltage Vt will be affected by body effect.	(6)
Q.4	a.	Obtain pull up to pull down ratio for a nMOS inverter driven through one or more pass transistor.	(10)
	b.	Explain the working of MOSFET.	(6)
Q.5	a.	Write λ based design rules for wires and transistor.	(8)
	b.	Define sheet resistance and standard capacitance for a feature size transist	tor.(8)
Q.6	a.	Derive an expression for total delay for N-cascaded inverters driving capacitive load.	a large (8)

AE74 / DEC _ 2010

Inverter	1	


Inverter 2

$Lpu_1 = 16 \lambda$	$Lpu_2 = 2\lambda$
Wpu ₁ =2 λ	Wpu ₂ =2 λ
$Lpd_1 = 2 \lambda$	$Lpd_2 = 2 \lambda$
$Wpd_1=2 \lambda$	Wpd ₂ =8 λ

1.1.	-
HΊσ	
116.	

Q.7	a.	Obtain scaling factor for the following:(i) Parasitic capacitance (ii) Channel resistance (iii) Gate delay(iv) Saturation current(8)
	b.	Design a two-line to four-line decoder circuit to the mask layout level and determine its boundary box. (8)
Q.8	a.	Design two input NOR gate using CMOS. (6)
	b.	Write an example of an inverter showing that the power dissipation decreases at the expense of area. (10)
Q.9	a.	Write a note on design styles in VLSI. (6)

b. Obtain test-vector for the Fig.2, using sensitised path based testing. (10)

2