AMIETE - ET (NEW SCHEME) Code: AE72 -

Subject: MICROWAVE THEORY AND TECHNIQUES

Time: 3 Hours

DECEMBER 2010

Max. Marks: 100

NOTE: There are 9 Questions in all.

- StudentBounty.com • Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of ٠ the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following: (2×10)

a. A waveguide section in a microwave circuit will act as a:

(A) High pass filter	(B) Low pass filter
(C) Band pass filter	(D) Band stop filter

b. X-band microwave frequency range is defined as

(A) 8-12 GHz	(B) 4-6 GHz
(C) 18-25 GHz	(D) 1-2 GHz

c. The phase velocity v_P and the group velocity v_g in a waveguide, and velocity c of light are related as follows

$(\mathbf{A}) v_p + v_g = c$	(B) $v_p / v_g = a \text{ constant}$
$(\mathbf{C}) v_p v_g = c^2$	(D) $v_p + v_g = c^2$

d. When a transmission line is terminated by its characteristic impedance it represents

(A) An infinite line	(B) A mismatched line
(C) It is high VSWR line	(D) It is a finite line

e. The dominant mode in a rectangular waveguide is

(A) TE_{10} mode	(B) TM_{11} mode
(C) TEM mode	(D) TE ₁₁ mode

f. A magic T is a microwave junction having

(A) 4 ports	(B) 6 ports
(C) 2 ports	(D) 5 ports

1

g. In a microstrip line the propagating mode is

(A) a pure TEM mode (C) a TE mode

(B) a quasi TEM mode (D) a TM mode

StudentBounty.com h. In a Hybrid Ring (rat-race circuits), when a wave is fed into port 1, it will not appear at port 3 because the difference of phase shift for the waves travelling in the clockwise and anticlockwise directions is

(A) zero	(B)	180°
(C) 360°	(D)	90°

i. A transmission line has characteristic impedance of $50 + j0.01 \Omega$ and is terminated in a load impedance of 73-j42.5 Ω . The VSWR is

(A) 0.38	(B) 0.4524
(C) 2.21	(D) 0.2262

j. An IMPATT diode has the following parameters:

Carrier drift velocity $v_d = 2 \times 10^7$ cm/s; Drift region length $L = 6 \,\mu\text{m}$;

 $V_{o max} = 100 \text{ V}; I_{max} = 200 \text{ mA}; \eta = 15; V_{od} = 90 \text{ V}.$ The resonant

frequency in giga hertz is

(A) 1.667 GHz	(B) 1.5 GHz
(C) 166.7 GHz	(D) 16.67 GHz

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. Why a conventional open wire line is not suitable for microwave transmission? **O.2** Indicate the different types of transmission lines commonly used with mode of transmission used in each case. (5)
 - b. Write the characteristics of smith chart and describe the steps involved in determination of normalized impedance using smith chart. (6)
 - c. Find the input impedance of a line, given a line of characteristic impedance 100 Ω and $\frac{1}{2}\lambda$ long. If this line is terminated in a load which has an impedance 150+j60; what is its input impedance (use smith chart) (5)
- a. Derive the wave equation for TM wave and obtain all the field components in a **Q.3** rectangular waveguide. (10)
 - b. An air filled rectangular waveguide of inside dimension 7×3.5 cms operates in the dominant TE_{10} mode as shown in Fig.1.

AE72 / DEC _ 2010

2

- Q.4 a. The impedance matrix of a certain dumped element network is given by $z = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$. Determine the scattering matrix. (6)
 - b. Write a short note on the following with neat diagram. (i) circulator (ii) isolator. (3+3)
 - c. Explain magic-T with neat diagram. Write S-matrix representation of it. (4)
- Q.5 a. What is transfer electron effect. Explain how this is used in solid-state device in generating micro wave oscillations. (6)
 - b. Explain Gunn effect and discuss the different modes of oscillations in Gunn diode. (10)
- Q.6 a. What are the high frequency limitations of vacuum tubes? How they overcome in microwave tubes. (4)
 - b. With the help of a neat diagram explain the principle of Reflex klystron. Illustrate velocity modulation with the help of Applet gate diagram and obtain an expression for output power and efficiency of it. (8)
 - c. An IMPATT diode has the following parameters:
 - (i) Carrier drift velocity $v_d = 4 \times 10^7 \text{ cms/s}$;
 - (ii) Drift region length $L = 6 \ \mu m$.
 - (iii) Maximum operating voltage $V_{max} = 100 V$;
 - (iv) Maximum operating current $I_{0 max}$ =200 mA;
 - (v) Efficiency $\eta = 15\%$;
 - (vi) Breakdown voltage V_{bd} =90 Volts.

Compute (i) maximum CW output power in watts (ii) resonant frequency in giga hertz. (4)

Q.7 a. Explain equations of electron motion in a cylindrical magnettron. (6)

С

www.StudentBounty.com

b. A X band pulsed cylindrical magnettron has the following operating parameters:

AE77 / DEC _ 2010

Λ