AMIETE – ET (NEW SCHEME) - Code: AE63

Subject: ELECTROMAGNETICS & RADIATION SYSTEMS Max. Marks: 100

Time: 3 Hours

DECEMBER 2010

NOTE: There are 9 Questions in all.

- StudentBounty.com • Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each • question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The electric field strength \tilde{E} from potential V is defined as

$(\mathbf{A}) \ \vec{\mathbf{E}} = -\nabla \mathbf{V}$	$(\mathbf{B}) \ \vec{\mathbf{E}} = \nabla \times \vec{\mathbf{B}}$
(C) $\vec{E} = \nabla \bullet V$	(D) $E = \rho V$

b. The power density is defined mathematically as

(A)
$$p = \frac{Pt}{4\pi r^2}$$
 (B) $\frac{Pt}{4\pi r^3}$
(C) $\frac{Pt}{4\pi}$ (D) $\frac{Pt}{r}$

- c. The expression for equation of continuity is
 - (A) $\nabla \cdot \vec{J} = -\frac{\partial \rho V}{\partial t}$ **(B)** $\nabla \cdot \vec{J} = \frac{\partial \rho V}{\partial t}$ (C) $\nabla \cdot \vec{J} = -\frac{\partial \vec{B}}{\partial t}$ **(D)** $\nabla \cdot \vec{J} = 0$
- d. The ground wave attenuates as one moves away from the transmitter, because of
 - (A) Interference from the sky wave (B) Loss of line of sight
 - (C) Single hop distance limitation (D) Wave tilt
- e. Which of the antennas are wide band

(A) Discone	(B) Folded dipole
(C) Helical	(D) Marconi

XE42 / DEC _ 2010

f. The standard reference antenna for directive gain is

(A) infinitesimal dipole (**C**) Doublet

- (B) isotropic antenna **(D)** $\lambda/2$ antenna
- StudentBounty.com g. When a microwave signal follows the curvature of the earth this is known as

(A) Faraday effect	(B) Troposcatter
(C) Ducting	(D) Ionospheric reflection

h. For an antenna operating at f = 50 MHz the wave length of the operation is

(A)	600 mtr	(B) $\frac{3 \times 10^8}{\text{f}}$ mtr
(C)	10 mtr	(D) 100 mtr

i. A helical antenna is used for satellite tracking because of its

(A) Circular polarization	(B) Manoeuvrability
(C) Broadband width	(D) Good front to back ratio

j. As an electromagnetic wave travels in free space, only one out of these can happen

(A) Absorption	(B) Attenuation
(C) Refraction	(D) Reflection

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Derive Integral and differential form of Maxwell's first equation as applied to the electrostatic. (8)
 - b. The 50 cm length of co-axial cable has an inner radius of 1 mm and an outer radius of 4 mm. The space between the conductors is filled with air. The total charge on the inner conductor is 30 nano coulomb. Find the charge on each conductor, \vec{E} and \vec{D} fields. (8)
- **Q.3** a. Obtain Poisson's equation, from point form of Gauss's law and obtain Laplace's equation in Cartesian coordinates. (8)
 - b. State and explain BIOT-Savart's law and explain concisely the vector form of the law. (8)
- **Q.4** Define what is an electromagnetic boundary. State and prove the magnetic a. boundary conditions. (8)

r

- StudentBounts.com b. Calculate the self inductance and mutual inductance between two co solenoids of radii R_1 , and $R_2 \{R_2 > R_1\}$, carrying currents I_1 and I_2 N₁ and N₂ turns/mt, respectively.
- Q.5 a. Write down Maxwell's equations in point differential form and explain their significance.
 - b. Write short notes on: (i) Retarded potentials (ii) Displacement current $(4 \times 2 = 8)$
- **Q.6** a. Apply Ampere's circuital law to obtain the expression for magnetic field in all the regions if cylindrical conductor carries a direct current 'I' and its radius is 'R' mts. (8)
 - b. The wet marshy soil is characterized by conductivity $\sigma = 10^{-2}$ mhos/mt relative permittivity $\in_r = 15$ and relative permeability $\mu_r = 1$, At frequencies 60Hz, 1MHz, 100 MHz and 10 GHz, indicate whether soil be considered a conductor or a dielectric. (8)
- **Q.7** a. Obtain an equation of transmission coefficient for vertical polarization in case of wave oblique incidence on a dielectric interface. (10)
 - b. Find the reflection and transmission coefficients at the boundary for normal incidence at an angle of incidence 10° . For region 1, $\epsilon_{r_1} = 8.5, \mu_{r_1} = 1$ and $\sigma_1 = 0$, and the region 2 is a free space. (6)

Q.8 a. Explain the following terms:

- (i) Antenna gain and effective radiated power.
- (ii) Antenna losses and efficiency. (5+5=10)
- b. Determine the length an antenna operating at a frequency of 500 KHz. Take velocity factor $V_f = 0.95$. (6)
- Q.9 a. Explain what are non-resonant antennas. Write and explain their radiation patterns. (6)
 - b. Explain, in detail, the propagation of ground waves. (5)
 - c. Explain with sketches the sky wave propagation. (5)

2