AMIETE – ET (NEW SCHEME) – Code: AE58

Subject: MATERIALS & PROCESSES

Time: 3 Hours

DECEMBER 2010

58 Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The minimum number of ions in the unit cell of an ionic crystal with FCC space lattice are

(A) 16	(B) 12
(C) 8	(D) 2

b. If r be the radius of the atom in a crystal crystallizing in the simple cubic structure, then the nearest neighbour distance is

(A)	8r	(B)	4r
(C)	2r	(D)	r

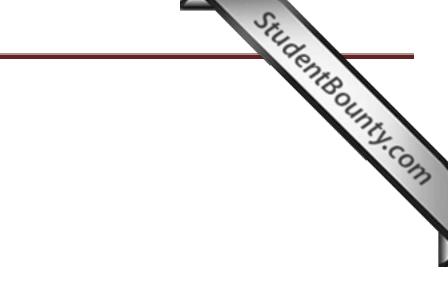
c. Hydrogen bonds are stronger than

(A) ionic bonds	(B) metallic bonds
(C) covalent bonds	(D) Vander Waals bonds

d. Which of the following metals has the lowest temperature coefficient of resistance?

(A) Silver	(B) Gold
(C) Copper	(D) Aluminium

e. In photoelectric effect the number of electrons emitted is proportional to


(A) work function of cathod	(B) velocity of incident beam
(C) frequency of incident beam	(D) intensity of incident beam

f. The composition of manganin alloy is

(A) 60% Cu, 10% Mn, 30% Ni	(B) 80% Cu, 10% Mn, 10% Ni
(C) 80% Cu, 20% Mn	(D) 60% Cu, 15% Mn, 25% Ni

4

AE58 / DEC _ 2010

g. Magnetic induction B and magnetic field intensity H are related by

StudentBounty.com

(A) $B = \mu o + \mu o H$	(B) $B = \mu o \mu r H$
(C) $B = \mu o H^2$	(D) $B = \mu o + H$

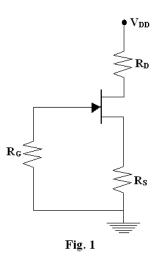
h. The dielectric strength of a material is

(A) Current which can pass through it.

- (B) Voltage that can be applied to it.
- (C) Field (voltage per meter thickness) that can be with-stood by it.
- (D) Current density that can be transmitted by it.
- i. *N*-type germanium is obtained on doping intrinsic germanium by

(A) Phosphorous	(B) Aluminium
(C) Boron	(D) Gold

j. Below the ferromagnetic curie temperature, the ferromagnetic material exhibit B-H whose form is


(A) straight line	(B) exponential curve
(C) B-H loop	(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. What type(s) of bonding would be expected for each of the following materials: silver, brass (a copper-zinc alloy), rubber, barium sulfide (BaS), solid xenon, bronze, nylon, and aluminium phosphide (AlP)?
 (8)
 - b. Calculate the volume of an FCC unit cell in terms of the atomic radius R. Show that the atomic packing factor for the FCC crystal structure is 0.74. (8)
- Q.3 a. Draw polymer structures for polyethylene, polyvinyl chloride, polypropylene, and polystyrene.(8)
 - b. ZnS has the zinc blende structure. If its density is 3.02 g/cm³ and the lattice parameter is 0.59583 nm, determine the number of Schottky defects per unit cell.
 (8)
- Q.4 a. State and explain Fick's first and second law of diffusion. (8)
 - b. Discuss the properties and uses of copper, aluminium and tungsten as conducting materials. (8)
- Q.5 a. Write the name and describe the three types of polarization. (8)

2

- b. What is piezoelectricity? What are different applications in piezoelectricity is used. Describe materials that show piezoelectricity. (2+3+
- StudentBounty.com 0.6 a. There is a net magnetic moment which is associated with each atom in paramagnetic and ferromagnetic materials. Explain why ferromagnetic materials can be permanently magnetized whereas paramagnetic ones cannot.
 - b. The magnetic flux density within a bar of some material is 0.630 Tesla at an magnetic field of 5×10^5 A/m. Compute the following for this material: (i) the magnetic permeability, and (ii) the magnetic susceptibility. What type(s) of magnetism would you suggest as being displayed by this material? (8)
- a. Some hypothetical metal have an electrical resistivity of 3.3×10^{-8} Ω -m. A **Q.7** specimen of this metal 15 mm thick is passed a current of 25 A; and a magnetic field of 0.95 Tesla is simultaneously imposed in a direction perpendicular to that of the current, a Hall voltage of -2.4×10^{-7} V is measured. Compute (i) the electron mobility for this metal, and (ii) the number of free electrons per cubic meter. (8)
 - b. Explain the various steps required in the fabrication of a semiconductor device. (8)
- **Q.8** a. Explain in brief dielectric type, ceramic type and electrolytic type of capacitors. (8)
 - b. What type of inductors core material would you select for radio frequency inductors? What are the various causes of losses in it? (8)
- **Q.9** a. Write short note on production of Czochralski silicon. (6)
 - b. The n channel circuit shown in Fig.1 employs one of the several method of self-bias.(i) Assume negligible gate leakage current and show that if V_{DD}>0, then $V_{GSO} < 0$, and hence the device is properly biased. (ii) If $R_D = 3$ k ohm, V_{DD} =15V and V_{DSO} =7V, find I_{DO} and V_{GSO} . (10)

Л