AMIETE - ET/CS/IT (NEW SCHEME) - Code: AE57/AC57

Subject: SIGNALS AND SYSTEMS

Time: 3 Hours

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. System function $H(z)$ for the system described by the difference equation $4 y(n)=3 x(n)+2 x(n-1)-y(n-1)$ is
(A) $\frac{3+2 z^{-1}}{4+z^{-1}}$
(B) $\frac{1+4 z^{-1}}{2+3 z^{-1}}$
(C) $\frac{4+3 z^{-1}}{1+2 z^{-1}}$
(D) $\frac{2+\mathrm{z}^{-1}}{3+4 \mathrm{z}^{-1}}$
b. A system has an input-output relation given by $y=a x+b$. The system is linear if
(A) a and b are arbitrary
(B) $b=0$
(C) $a=0$
(D) $b<0$
c. A system is characterized by the equation $y(t)=10 x(t)+5$ is
(A) Stable, time-invariant
(B) Unstable, time-invariant
(C) Stable, time-variant
(D) Unstable, time-variant
d. Inverse Z-transform of $X(z)=\frac{2 z}{(z-2)^{2}}$ is
(A) $4 \mathrm{u}(\mathrm{n})$
(B) $2^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
(C) $8 u(n)$
(D) $\mathrm{n} 2^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
e. The impulse response of a discrete-time system is given by $\mathrm{h}(\mathrm{n})=\frac{1}{2}(\delta[\mathrm{n}]+\delta[\mathrm{n}-1])$. The magnitude response can be expressed as
(A) $|\cos (\Omega / 2)|$
(B) $\cos (\Omega / 2)$
(C) $|\sin (\Omega / 2)|$
(D) $\sin (\Omega / 2)$
f. A series RL ($R=1 \mathrm{ohm}, L=1 \mathrm{H}$) circuit, is energized with a voltage $\cos t u(t)$ with initial current $i(0)=2 \mathrm{~A}$. The natural response for the curre in the circuit is
(A) $\frac{1}{2} \cos t$
(B) $\frac{1}{2} \cos \mathrm{t}+\frac{1}{2} \sin \mathrm{t}$
(C) $\frac{1}{2} \sin \mathrm{t}$
(D) $\frac{3}{2} \mathrm{e}^{-\mathrm{t}}$
g. The zero-frequency component in the Fourier series representation of the square wave shown in Fig. 1 is
(A) $\frac{1}{2} \mathrm{~T}_{\mathrm{S}} / \mathrm{T}$
(B) $\frac{1}{2} \mathrm{~T} / \mathrm{T}_{\mathrm{s}}$
(C) $2 T_{s} / T$
(D) $|z|=0$

h. Inverse DTFT of $\delta(\Omega),-\pi<\Omega \leq \pi$ is
(A) $u(n)$
(B) $\frac{1}{2 \pi}$
(C) $\delta(n)$
(D) 2π
i. Fourier transform of the function $x(t)=\left\{\begin{array}{ll}1, & -T \leq t \leq T \\ 0, & |t|>T\end{array}\right.$ is
(A) $\frac{2}{\omega} \sin (\omega \mathrm{~T})$
(B) $\frac{1}{\omega} \sin (\omega \mathrm{~T})$
(C) $\frac{\omega}{2} \sin (\omega \mathrm{~T})$
(D) $\omega \sin (\omega \mathrm{T})$
j. Fourier transform of a periodic unit impulse train of period τ is an impulse train of period and magnitude, respectively,
(A) $\frac{\pi}{\tau}, \frac{2 \pi}{\mathrm{~T}}$
(B) $\frac{2 \pi}{\tau}, \frac{2 \pi}{\mathrm{~T}}$
(C) $\frac{\pi}{\tau}, \frac{\pi}{T}$
(D) $\frac{2 \pi}{\tau}, \frac{\pi}{T}$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Determine the Laplace transform of the signal $v(t)=0.5(\sin t)(\sin 1000 t) u(t)$
b. Determine the voltage $v(t)$ for $t \geq 0$ for the circuit shown in Fig. 2 when $e(t)=1+\sin t$. Use Laplace transform method. Assume no initial charge on the capacitor.

Fig. 2
Q. 3 a. Determine the impulse response $h(t)$ for the system characterized by the differential equation $\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}+2 y(t)=x(t)$
b. (i) State the Sampling theorem
(4)
(ii) Determine the condition on the sampling interval so that $x(t)=\sin (10 \pi t) / \pi t$ can be uniquely represented by the discrete-time sequence.
Q. 4 a. The impulse response of a linear time-invariant system is $h(t)=u(t)$. Determine the output of the system if the input $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t}), a>0$ by convolution. Show all the steps graphically (rough sketch) also. (No graph paper to be used.
b. Sketch the odd part of the signal shown in Fig. 3

rig. 9
Q. 5 a. Consider a discrete-time LTI system described by
$y[n]-\frac{1}{2} y[n-1]=x[n]+\frac{1}{2} x[n-1]$
(i) Determine the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ of the system.
(ii) Find the impulse response $\mathrm{h}[\mathrm{n}]$ of the system.
(iii) Determine its response $y[n]$ to the input $x[n]=\cos \frac{\pi}{2} n$.
b. Consider the periodic function defined over one period T is

$$
\mathrm{x}(\mathrm{t})= \begin{cases}1, & |\mathrm{t}|<\mathrm{T}_{1} \\ 0, & \mathrm{~T}_{1}<|\mathrm{t}|<\mathrm{T} / 2\end{cases}
$$

(i) Sketch the waveform $x(t)$.
(ii) Which type of symmetry does the function exhibit?
(iii) Determine the Fourier series coefficients
(iv) Plot the magnitude spectra of the function when $T=4 T_{1}$
Q. 6 a. Explain the linearity and time-shifting properties of the z-transform.
b. Find the Z-transform and the region of convergence of the sequence

$$
\begin{equation*}
x(n)=b^{|n|} \tag{6}
\end{equation*}
$$

Q. 7 a. Let $\mathrm{x}(\mathrm{t})$ be a signal with Fourier transform $\mathrm{X}(\mathrm{j} \omega)$. Derive the following properties
(i) Parseval's relation
(ii) Integration property
b. Determine the Fourier transform of the function $f(t)=e^{-a t} \cos (\omega t+\theta)$
Q. 8 a. Verify the convolution theorem for DTFT.
b. Determine the discrete Fourier series representation for each of the following sequences:
(i) $\mathrm{x}[\mathrm{n}]=\cos \frac{\pi}{4} \mathrm{n}$
(ii) $\mathrm{x}[\mathrm{n}]=\cos \frac{\pi}{3} \mathrm{n}+\sin \frac{\pi}{4} \mathrm{n}$
Q. 9 a. Two random variables X and Y have the joint probability density function

$$
P_{X Y}(x, y)=\left\{\begin{array}{cc}
\operatorname{Ae}^{-(2 X+Y)}, & x, y \geq 0 \tag{2}\\
0, & \text { otherwise }
\end{array}\right.
$$

(i) Find the value of A
(ii) Compute $\mathrm{P}_{\mathrm{X}}(\mathrm{x})$ and $\mathrm{P}_{\mathrm{Y}}(\mathrm{y})$.
b. If X and Y are independent random variable having normal distributions with parameters $\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and $\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$, respectively. Find the distribution of $\mathrm{X}+\mathrm{Y}$.

