AMIETE – ET/CS/IT (NEW SCHEME) – Code: AE57/AC57

Subject: SIGNALS AND SYSTEMS

Time: 3 Hours

DECEMBER 2010

AC57) Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:
 - a. System function H(z) for the system described by the difference equation 4y(n) = 3x(n) + 2x(n-1) - y(n-1) is

(A) $\frac{3+2z^{-1}}{4+z^{-1}}$	$(\mathbf{B}) \ \frac{1+4z^{-1}}{2+3z^{-1}}$
(C) $\frac{4+3z^{-1}}{1+2z^{-1}}$	$(\mathbf{D}) \ \frac{2+z^{-1}}{3+4z^{-1}}$

b. A system has an input-output relation given by y = ax + b. The system is linear if

(A) <i>a</i> and <i>b</i> are arbitrary	(B) $b = 0$
(C) $a = 0$	(D) <i>b</i> < 0

c. A system is characterized by the equation y(t) = 10 x(t) + 5 is

(A) Stable, time-invariant	(B) Unstable, time-invariant
(C) Stable, time-variant	(D) Unstable, time-variant

d. Inverse Z-transform of $X(z) = \frac{2z}{(z-2)^2}$ is (A) 4u(n) (B) $2^n u(n)$

(C)
$$8u(n)$$
 (D) $n2^n u(n)$

e. The impulse response of a discrete-time system is given by $h(n) = \frac{1}{2} (\delta[n] + \delta[n-1]).$ The magnitude response can be expressed as (A) $|\cos(\Omega/2)|$ (B) $\cos(\Omega/2)$ (C) $|\sin(\Omega/2)|$ (D) $\sin(\Omega/2)$

AE57/AC57/AT57/ DEC. - 2010

AMIETE - ET/CS/IT (NEW SCHEME)

StudentBounty.com f. A series RL (R = 1 ohm, L = 1 H) circuit, is energized with a voltage $\cos t u(t)$ with initial current i(0) = 2 A. The natural response for the current in the circuit is

(A) $\frac{1}{2}\cos t$	(B) $\frac{1}{2}\cos t + \frac{1}{2}\sin t$
(C) $\frac{1}{2}\sin t$	$(\mathbf{D}) \ \frac{3}{2} \mathrm{e}^{-\mathrm{t}}$

g. The zero-frequency component in the Fourier series representation of the square wave shown in Fig.1 is

(A)
$$\frac{1}{2}T_s / T$$
 (B) $\frac{1}{2}T / T_s$
(C) $2T_s / T$ (D) $|z| = 0$

h. Inverse DTFT of $\delta(\Omega)$, $-\pi < \Omega \le \pi$ is $(\mathbf{R})^{-1}$ (\mathbf{A}) $\mathbf{u}(\mathbf{n})$

(A)
$$u(n)$$
 (B) $\frac{1}{2\pi}$
(C) $\delta(n)$ (D) 2π

i. Fourier transform of the function $x(t) = \begin{cases} 1, & -T \le t \le T \\ & & \text{is} \\ 0, & |t| > T \end{cases}$

(A)
$$\frac{2}{\omega}\sin(\omega T)$$
 (B) $\frac{1}{\omega}\sin(\omega T)$
(C) $\frac{\omega}{2}\sin(\omega T)$ (D) $\omega\sin(\omega T)$

j. Fourier transform of a periodic unit impulse train of period τ is an impulse train of period and magnitude, respectively,

(A) $\frac{\pi}{\tau}, \frac{2\pi}{T}$	$(\mathbf{B}) \ \frac{2\pi}{\tau}, \ \frac{2\pi}{T}$
(C) $\frac{\pi}{\tau}, \frac{\pi}{T}$	(D) $\frac{2\pi}{\tau}, \frac{\pi}{T}$

AE57/AC57/AT57/ DEC. - 2010

AMIETE - ET/CS/IT (NEW SCHEME)

www.StudentBounty.com

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Determine the Laplace transform of the signal $v(t) = 0.5(\sin t)(\sin 1000t)u(t)$
- StudentBounty.com b. Determine the voltage v(t) for $t \ge 0$ for the circuit shown in Fig.2 when $e(t) = 1 + \sin t$. Use Laplace transform method. Assume no initial charge on the capacitor.

- Q.3 a. Determine the impulse response h(t) for the system characterized by the differential equation $\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} + 2y(t) = x(t)$ (6)
 - b. (i) State the Sampling theorem (4) (ii) Determine the condition on the sampling interval so that $x(t) = \sin(10\pi t)/\pi t$ can be uniquely represented by the discrete-time sequence. (6)
- a. The impulse response of a linear time-invariant system is h(t) = u(t). 0.4 Determine the output of the system if the input $x(t) = e^{-at}u(t)$, a > 0 by convolution. Show all the steps graphically (rough sketch) also. (No graph paper to be used. (9)
 - b. Sketch the odd part of the signal shown in Fig.3 (7)

F1g.3 a. Consider discrete-time **Q.5** a LTI system described by $y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{2}x[n-1]$

AE57/AC57/AT57/ DEC. - 2010

(10)

www.StudentBounty.com

- (i) Determine the frequency response $H(e^{j\omega})$ of the system.
- (ii) Find the impulse response h[n] of the system.
- (iii) Determine its response y[n] to the input x[n] = $\cos \frac{\pi}{2}$ n.
- b. Consider the periodic function defined over one period T is

$$\mathbf{x}(t) = \begin{cases} 1, & |t| < T_1 \\ \\ 0, & T_1 < |t| < T/2 \end{cases}$$

StudentBounty.com

(8)

- (i) Sketch the waveform x(t).
- (ii) Which type of symmetry does the function exhibit?
- (iii) Determine the Fourier series coefficients
- (iv) Plot the magnitude spectra of the function when $T = 4T_1$
- Q.6 a. Explain the linearity and time-shifting properties of the *z*-transform. (10)
 - b. Find the Z-transform and the region of convergence of the sequence $x(n) = b^{|n|}$ (6)
- Q.7 a. Let x(t) be a signal with Fourier transform X(jω). Derive the following properties
 (i) Parseval's relation
 (ii) Integration property
 (8)
 - b. Determine the Fourier transform of the function $f(t) = e^{-at} \cos(\omega t + \theta)$ (8)
- **Q.8** a. Verify the convolution theorem for DTFT.
 - b. Determine the discrete Fourier series representation for each of the following sequences:

(i)
$$x[n] = \cos\frac{\pi}{4}n$$
 (ii) $x[n] = \cos\frac{\pi}{3}n + \sin\frac{\pi}{4}n$ (8)

Q.9 a. Two random variables X and Y have the joint probability density function

$$P_{XY}(x, y) = \begin{cases} Ae^{-(2X+Y)}, & x, y \ge 0\\ 0, & \text{otherwise} \end{cases}$$

i) Find the value of A (2)

- (ii) Compute $P_X(x)$ and $P_Y(y)$. (8)
- b. If X and Y are independent random variable having normal distributions with parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) , respectively. Find the distribution of X + Y. (6)

AE57/AC57/AT57/ DEC. - 2010

www.StudentBounty.com Homework Help & Pastpapers