AMIETE - ET/CS/IT (NEW SCHEME) - Code: AE56/AC56

Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Inverse transformation $\mathrm{w}=\frac{1}{\mathrm{z}}$, transforms the straight line $2 \mathrm{ay}+3 \mathrm{bx}=0$, into
(A) circle
(B) an ellipse
(C) straight line through origin
(D) straight line
b. The value of the integral $\int_{C} \frac{z+1}{z^{3}-2 z^{2}} d z$, where C is the circle $|z|=1$, is equal to
(A) $2 \pi \mathrm{i}$
(B) $-\frac{2}{3} \pi \mathrm{i}$
(C) zero
(D) $-\frac{3}{2} \pi \mathrm{i}$
c. If r is the distance of a point (x, y, z) from the origin, the value of the expression $\hat{j} \times \operatorname{grad} \frac{1}{\mathrm{r}}$ equals
(A) $\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}(\hat{\mathrm{j}} \mathrm{z}-\hat{\mathrm{k}} \mathrm{x})$
(B) $\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}(\hat{k} x-\hat{i} z)$
(C) zero
(D) $\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}(\hat{j} y-\hat{k} x)$
d. The value of the surface integral $\iint_{S}(y z d y d z+z x d z d x+x y d x d y)$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$, is
(A) $\frac{4 \pi}{3}$
(B) 4π
(C) zero
(D) 12π
e. One of the solutions to the auxiliary equations corresponding to the Lagrange's differential equation $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$ is
(A) $y^{2}-2 y z-z^{2}=C_{1}$
(B) $y^{2}+2 y z-z^{2}=C_{1}$
(C) $y^{2}+2 y z+z^{2}=C_{1}$
(D) $y^{2}-2 y z+z^{2}=C_{1}$
f. The fixed points of the transformation $\mathrm{W}=\frac{2 \mathrm{Z}-5}{\mathrm{Z}+4}$ are given by
(A) $\left(\frac{5}{2}, 0\right)$
(B) $(-4,0)$
(C) $(-1+2 \mathrm{i},-1-2 \mathrm{i})$
(D) $(-1+\sqrt{6},-1-\sqrt{6})$
g. Which one of the following does not equal $\Delta f(x-1)$?
(A) $\Delta \mathrm{E}^{-1} \mathrm{f}(\mathrm{x})$
(B) $\mathrm{E}^{-1} \Delta \mathrm{f}(\mathrm{x})$
(C) $\left(E^{-1}-1\right) f(x)$
(D) $\left(1-E^{-1}\right) \mathrm{f}(\mathrm{x})$
h. $\Delta\left(\frac{1}{\mathrm{f}(\mathrm{x})}\right)$ equals
(A) $\frac{\Delta \mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{x}+1)}$
(B) $\frac{\Delta \mathrm{f}(\mathrm{x}+1)}{\mathrm{f}(\mathrm{x}+1) \mathrm{f}(\mathrm{x})}$
(C) $\frac{-\Delta \mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{x}+1)}$
(D) $-\frac{\Delta \mathrm{f}(\mathrm{x}+1)}{\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{x}+1)}$
i. A die is tossed thrice. Getting 1 or 6 on a toss is considered to be a success. The variance of the number of successes is
(A) $\frac{3}{2}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) 1
j. If the diameter of an electric cable is assumed to be continuous random variable with probability density function $f(x)=k x(1-x), 0 \leq x \leq 1$ then the value of k is
(A) 3
(B) 6
(C) $\frac{2}{3}$
(D) $\frac{3}{2}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. If $f(z)=\left\{\begin{array}{cc}\frac{x^{2} y(y-i x)}{x^{4}+y^{2}}, & \text { when } z \neq 0 \\ z e r o, & \text { when } z=0\end{array}\right.$
prove that $\frac{\mathrm{f}(\mathrm{z})-\mathrm{f}(0)}{\mathrm{z}} \rightarrow 0$, as $\mathrm{z} \rightarrow 0$, along any radius vector but not as $\mathrm{z} \rightarrow 0$ in any manner.
b. Obtain the bilinear transformation which maps $\mathrm{z}_{1}=\mathrm{i}, \mathrm{z}_{2}=1, \mathrm{z}_{3}=-1$ onto $\mathrm{w}_{1}=1, \mathrm{w}_{2}=0, \mathrm{w}_{3}=\infty$, respectively. Also, obtain its inverse transformation.
Q. 3 a. Evaluate the integral $\int_{C} \frac{\sin \pi z^{2}}{(z-1)(z-2)} d z$ where C is the circle $|z|=3$.
b. Find the Laurent's series of $f(z)=\frac{1}{z^{2}\left(1-z^{2}\right)}$ and determine the precise region of its convergence.
Q. 4 a. Find $\mathrm{f}(\mathrm{r})$ such that $\mathrm{f}(\mathrm{r}) \overrightarrow{\mathrm{r}}$ is both solenoidal and irrotational.
b. Find the directional derivative of the function $\phi(x, y, z)=x^{2}-y^{2}+2 z^{2}$ at the point $P(2,3,4)$ in the direction of the line $P Q$ where Q has coordinates $(6,0,5)$. In what direction it will be maximum and what shall be its value?
Q. 5 a. State Stoke's theorem. Evaluate the surface integral $\iint_{S}(\operatorname{curl} \overrightarrow{\mathrm{~F}} \cdot \mathrm{n}) \mathrm{ds}$ by transforming it into line integral, S being that part of the surface of the paraboloid $z=1-x^{2}-y^{2}$, for which $z \geq 0$ and $\vec{F}=y \hat{i}+z \hat{j}+x \hat{k}$.
b. Find $\iint_{S} \vec{F} \cdot \hat{x} d s$, where $\vec{F}=(2 x+3 z) \vec{i}-(3 x+y) \vec{j}+(y+2 z) \vec{k}$ and S is the surface of the sphere having centre $(3,-1,2)$ and radius 3 .
Q. 6 a. Solve the partial differential equation $u_{x}+u_{y}=2(x+y) u$, by the method of separation of variables.
b. Apply Charpit's method to obtain the complete integral of the equation $p^{2}-q^{2}=x-y$.
Q. 7 a. Using Newton's divided difference formula, calculate the value of $f(6)$ fron following data:

x	$:$	1	2	7	8
$\mathrm{f}(\mathrm{x})$	$:$	1	5	5	4

b. A train is moving at the speed (v) of $30 \mathrm{~m} / \mathrm{sec}$. Suddenly, brakes are applied. The speed of the train per second (after ' t ' seconds) is given by

Time (t)	0	5	10	15	20	25	30	35	40	45
Speed (v)	30	24	19	15	13	11	10	8	7	5

Apply Simpson's three-eighth rule to determine the distance moved by the train in 45 seconds.
Q. 8 a. Find the mean and variance of the random variable whose density function is given by $f(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x}, & x \geq 0 \\ 0, & \text { other wise }\end{array}\right.$
b. A student takes examination in four subjects viz., English, Chemistry, Mathematics and Physics, which are abbreviated as E, C, M and P respectively. He estimates his chances of passing in E as $\frac{4}{5}$, in C as $\frac{3}{4}$, in M as $\frac{5}{6}$ and in P as $\frac{2}{3}$. To qualify, he must pass in E and at least in two other subjects. Find the probability that he qualifies.
Q. 9 a. A factory producing cycle tyres, there is a small chance of 1 in 500 tyres to be defective. The tyres are supplied in lots of 10 . Using Poisson's distribution, calculate the approximate number of lots containing no defective and one defective tyre in a consignment of 10,000 lots (given $\mathrm{e}^{-0.02} \simeq 0.9802$).
b. In a normal distribution 31% of the items are under 45 and 8% over 64 . Find the mean and standard deviation of the distribution (given for area 0.19, $\mathrm{z}=0.496$ and for the area $0.42, \mathrm{z}=1.405$)

