AMIETE - ET/CS/IT (NEW SCHEME) - Code: AE51/AC51

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours
DECEMBER 2010
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. For which value of ' b ' the rank of the matrix $A=\left[\begin{array}{ccc}1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10\end{array}\right]$ is 2
(A) 1
(B) 2
(C) 3
(D) 0
b. If $u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(A) 0
(B) $\sqrt{2}$
(C) 1
(D) $\sqrt{3} / 2$
c. For what values of x, the matrix $\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular
(A) 0
(B) 3
(C) 0, 3
(D) $0,-3$
d. Regula-Falsi method requires \qquad initial approximations to the root.
(A) 1
(B) 2
(C) 3
(D) None of the above
e. The necessary and sufficient condition for the differential equation $M d x+N$ 0 to be exact is
(A) $\frac{\partial M}{\partial y}+\frac{\partial N}{\partial x}=0$
(B) $\frac{\partial \mathrm{M}}{\partial \mathrm{y}}-\frac{\partial \mathrm{N}}{\partial \mathrm{x}}=0$
(C) $\frac{\partial M}{\partial y} \times \frac{\partial N}{\partial x}=1$
(D) None of the above
f. Two function $y_{m}(x)$ and $y_{n}(x)$ defined on some interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, are said to be orthogonal on this interval w.r.t. the weight function $\mathrm{p}(\mathrm{x})>0$ if
(A) $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{p}(\mathrm{x}) \mathrm{y}_{\mathrm{m}}(\mathrm{x}) \mathrm{y}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=0$ for $\mathrm{m} \neq \mathrm{n}$
(B) $\int_{a}^{b} \mathrm{p}(\mathrm{x}) \frac{\mathrm{y}_{\mathrm{m}}(\mathrm{x})}{\mathrm{y}_{\mathrm{n}}(\mathrm{x})} \mathrm{dx}=0$ for $\mathrm{m} \neq \mathrm{n}$
(C) $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{p}(\mathrm{x}) \frac{\mathrm{y}_{\mathrm{n}}(\mathrm{x})}{\mathrm{y}_{\mathrm{m}}(\mathrm{x})} \mathrm{dx}=0$ for $\mathrm{m} \neq \mathrm{n}$
(D) $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{p}(\mathrm{x}) \mathrm{y}_{\mathrm{m}}(\mathrm{x}) \mathrm{y}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=1$ for $\mathrm{m} \neq \mathrm{n}$
g. The value of $\int_{0}^{\infty} \sqrt{x} e^{-\sqrt[3]{x}} d x$
(A) $\frac{16}{315} \sqrt{\pi}$
(B) π
(C) 1
(D) $\frac{315}{16} \sqrt{\pi}$
h. The value of $\mathrm{e}^{\frac{1}{2} \mathrm{x}(\mathrm{t}-1 / \mathrm{t})}$ is
(A) $\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$
(B) $\sum_{\mathrm{n}=0}^{\infty} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$
(C) $\sum_{\mathrm{n}=-\infty}^{0} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(\mathrm{x})$
(D) $\sum_{\mathrm{n}=0}^{\infty} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(\mathrm{x})$
i. Find the complementary function of $(D-2)^{2}=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$
(A) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{e}^{2 \mathrm{x}}\right) \mathrm{x}$
(B) $\left(C_{1}+C_{2} x\right) e^{2 x}$
(C) $\left(C_{1} x+C_{2} x^{2}\right) e^{2 x}$
(D) $\left(\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{x}}\right) \cdot 2 \mathrm{x}$
j. For a system of $(\mathrm{m} \times \mathrm{n})$ equations, if the rank of the coefficient matrix in that of augmented matrix in r^{\prime}, then the equations will be consistent and the will be infinite number of solutions if:
(where m is the number of equation and n is the number of unknown)
(A) $r \neq r^{\prime}$
(B) $\mathrm{r}=\mathrm{r}^{\prime}=\mathrm{n}$
(C) $r=r^{\prime}<n$
(D) $\mathrm{r} \neq \mathrm{r}^{\prime}>\mathrm{n}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. If $z=(x+y)+(x+y) \phi\left(\frac{y}{x}\right)$, then prove that

$$
\begin{equation*}
x\left(\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y \partial x}\right)=y\left(\frac{\partial^{2} z}{\partial y^{2}}-\frac{\partial^{2} z}{\partial x \partial y}\right) \tag{8}
\end{equation*}
$$

b. Find the equation of the tangent plane and normal to the surface

$$
\begin{equation*}
x^{2}+2 y^{2}+3 z^{2}=12 \text { at }(1,2,-1) \tag{8}
\end{equation*}
$$

Q. 3 a. Change the order of integration of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} \sin n x d x d y$

Show that $\int_{0}^{\infty} \frac{\sin n \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2}$
b. Find the position of the centre of gravity of a semicircular lamina of radius ' a ' if its density varies as the square of the distance from the diameter.
Q. 4 a. Find the values of λ for which the equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$
$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$
are consistent, and find the ratios of $x: y: z$ when λ has the smallest of these values. What happens when λ has the greatest of these values.
b. Find the eigen values and the corresponding eigen vector of the matrix
$A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Q. 5 a. Using Newton-Raphson method, derive formulas to find
(i) $1 / \mathrm{N}$
(ii) $\mathrm{N}^{1 / \mathrm{q}}, \mathrm{N}>0, \mathrm{q}$ integer.

Hence find $1 / 18,(18)^{1 / 3}$ to four decimals. Use suitable initial approximation.
b. Apply Runge-Kutta method (fourth order) to find an approximate value or when $x=0.2$ given that $\frac{d y}{d x}=x+y^{2}$ and $y=1$ when $x=0$.
Q. 6 a. Solve $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$.
b. Solve $\frac{d y}{d x}=\frac{2 y-x-4}{y-3 x+3}$
Q. 7 a. Using the method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
b. Solve $\left[D^{2}+5 D+6\right][y]=e^{x}$
Q. $8 \quad$ a. Prove that $\int_{0}^{1} x J_{n}\left(\alpha_{x}\right) J_{n}\left(\beta_{x}\right) d x=\left\{\begin{array}{cc}0 & \alpha \neq \beta \\ \frac{1}{2}\left[J_{n+1}(\alpha)\right]^{2}, & \alpha=\beta\end{array}\right.$

Where α and β are the roots of $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$. Also discuss the orthogonality relation of Bessel function.
b. Prove that $J_{2}^{\prime}(x)=\left(1-\frac{4}{x^{2}}\right) J_{1}(x)+\frac{2}{x} J_{0}(x)$, where $J_{n}(x)$ in the Bessel function of first kind.
Q. 9 a. Show that $\sqrt{2 n}=\frac{2^{2 n-1}}{\sqrt{\pi}} \sqrt[\left(n+\frac{1}{2}\right)]{n} \quad$ and $\quad \sqrt{1 / 4} \sqrt[3]{3 / 4}=\pi \sqrt{2}$
b. Evaluate $\int_{0}^{\infty} \mathrm{e}^{-a \mathrm{x}} \mathrm{x}^{\mathrm{m}-1} \sin$ bx $d x$ in terms of Gamma function.

