AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE35/AC35/AT35 **Time: 3 Hours**

DECEMBER 2010

Subject: MATHEMA Max. Marks.

 (2×10)

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- StudentBounty.com The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:
 - a. The function $f(z) = |z|^2$ satisfy which condition:
 - (A) Differentiable everywhere
 - (B) Differentiable at z = 0 and nowhere else
 - (C) Not differentiable
 - (**D**) None of the above

b. Using Cauchy's integral formula, the value of $\int_C \frac{dz}{z(z-\pi i)}$, where C is

|z + 3i| = 1

c. The Taylor series which represents the function $\frac{z^2-1}{(z+2)(z+3)}$ in the region |z| < 2 is :

(A)
$$1 + \sum_{1}^{\infty} \left[\frac{3}{2^{n+1}} - \frac{8}{3^{n+1}} \right] z^n$$
 (B) $1 + \sum_{0}^{\infty} (-1)^n \left[\frac{3}{2^{n+1}} + \frac{8}{3^{n+1}} \right] z^n$
(C) $1 + \sum_{1}^{\infty} \left[\frac{3}{2^{n+1}} + \frac{8}{3^{n+1}} \right] z^n$ (D) $1 + \sum_{0}^{\infty} (-1)^n \left[\frac{3}{2^{n+1}} - \frac{8}{3^{n+1}} \right] z^n$

d. If $\vec{r} = \sin t \hat{i} + \cos t \hat{j} + t \hat{k}$, then the value of $\left| \frac{d^2 \vec{r}}{dt^2} \right|$ is : $(\Lambda) \sqrt{2}$ **(D)** 1

(C) 3 (D)
$$\sqrt{3}$$

AE35/AC35/AT35 / DEC _ 2010

AMIETE - ET/CS/IT (OLD SCHEME)

e. The curl of grad of scalar field F is

(A) 0
(B)
$$-1$$

(C) $\nabla^2 F$
(D) $\nabla (\nabla F)$

StudentBounts.com f. If $\vec{f} = 3xy\hat{i} - y^2\hat{j}$, then $\int_C \vec{f} \cdot d\vec{r}$ where C is the curve in xy plane, $y = 2x^2$ from (0,0) to (1,2): (A) $-\frac{7}{\epsilon}$ **(B)** $\frac{7}{6}$

(C)
$$\frac{7}{3}$$
 (D) $-\frac{7}{3}$

g. A variate X has the probability distribution

x:	-3	6	9
P(X=x):	1/	1/	1/
	1/6	/2	/3
Then the va	lue of E	(X), is :	

(**B**) $\frac{11}{2}$ (**D**) $\frac{5}{2}$ (A) $\frac{2}{11}$ (C) $\frac{93}{2}$

h. If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than '2' will get a bad reaction.

(A) 0.31	(B) 0.30
(C) 0.32	(D) 0.33

i. If $f(x, y, z) = x^2 y + y^2 x + z^2$; find ∇f at the point (1, 1, 1)

(A) $3\hat{i} + 3\hat{j} + 2\hat{k}$	(B)	$3\hat{i}-3\hat{j}+2\hat{k}$
(C) $3\hat{i} + 3\hat{j} - 2\hat{k}$	(D)	$3\hat{i}-3\hat{j}-2\hat{k}$

j. The type of singularity of the function $\frac{1}{\sin z - \cos z}$ at $z = \frac{\pi}{4}$ is

(A) isolated essential singularity (B) non-isolated essential singularity (C) double pole **(D)** simple pole

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and find its harmonic conjugate. (8) Q.2

AE35/AC35/AT35 / DEC _ 2010

www.StudentBounty.com

b. Find the image of closed half disk $|z| \le 1$, $I_m(z) \ge 0$ under the basis transformation $w = \frac{Z}{Z+1}$.

Q.3 a. Find the value of the integral $\int_{-\infty}^{1+i} (x - y + ix^2) dz$

- (i) along the straight line from z = 0 to z = 1+i
- StudentBounty.com (ii) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary axis from z = 1 to z = 1+i(8)
- b. Expand log(1+z) in a Taylor's series about z = 0 and determine the region of convergence for the resulting series. (8)

Q.4 a. Find the nature and location of the singularities of the function

$$f(z) = \frac{1}{z(e^{z} - 1)}.$$
Prove that $f(z)$ can be expanded in the form
$$\frac{1}{z^{2}} - \frac{1}{2z} + a_{0} + a_{2}z^{2} + a_{4}z^{4} + \dots$$
Where $0 < |z| < 2\pi$ and find the values of a_{0} and a_{2} . (8)

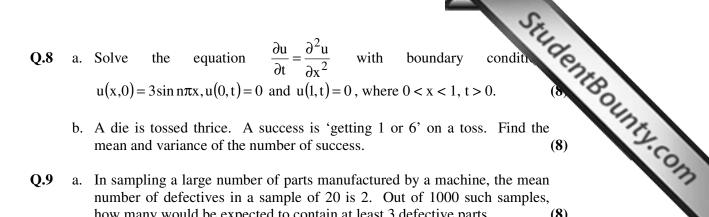
b. Evaluate the integral
$$I = \int_{0}^{2a} e^{\cos \theta} \cos(\sin \theta) d\theta$$
. (8)

Q.5 a. A particle move along the curves $x = 3t^2$, $y = t^2 - 2t$, $z = t^3$. Find its velocity and acceleration at t = 1 in the direction of vector $\vec{a} = \hat{i} + \hat{j} - \hat{k}$. (8)

b. Find
$$\vec{f} \times (\nabla \times \vec{g})$$
 at the point (1,-1,2) if
 $\vec{f} = xz^2\hat{i} + 2y\hat{j} - 3xz\hat{k}, \vec{g} = 3xz\hat{i} + 2yz\hat{j} - z^2\hat{k}$ (8)

- a. Verify Green's theorem in the plane for $\oint (xy + y^2) dx + x^2 dy$, where C is **Q.6** the closed curve of the region bounded by y = x and $y = x^2$. (8)
 - b. Evaluate by Stoke's theorem $\oint (\sin z dx \cos x dy + \sin y dz)$ where C is the boundary of the rectangle $0 \le x \le \pi, 0 \le y \le 1, z = 3$. (8)
- a. Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where **Q.7** $u(x,0) = 6e^{-3x}$. (8)
 - b. A tightly stretched string with fixed end points x = 0 and $x = \ell$ is initially in a position given by $y = y_0 \sin^3 \left(\frac{\pi x}{e}\right)$. If it is released from rest from (8) this position, find the displacement y(x, t)

AE35/AC35/AT35 / DEC = 2010AMIETE - ET/CS/IT (OLD SCHEME)



- 0.9 a. In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain at least 3 defective parts. (8)
 - b. In a test on 2000 electric bulbs, it was found that the life of a particular make, was normally distributed with an average life of 2040 hours and SD of 60 hours. Estimate the number of bulbs likely to burn for
 - (i) more than 2150 hours
 - (ii) less than 1950 hours and
 - (iii) more than 1920 hours and but less than 2160 hours.

(8)