AMIETE - ET (OLD SCHEME)

Code: AE21 **Time: 3 Hours** Subject: DIGITAL COMMUNICAT

Max. Marks:

DECEMBER 2010

NOTE: There are 9 Questions in all.

- StudentBounty.com • Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

- a. Signal to Quantization noise ratio in n-bit PCM system depend on
 - (A) Sampling frequency employed
 - (B) Independent of the value of n
 - (C) Increases with increasing value of n
 - (D) Decreases with increasing value of n
- b. Which system has maximum probability of error

(A) PSK	(B) ASK
(C) FSK	(D) BPSK

c. When number of quantization level is 64 in PCM, the number of pulses in a code group will be

(A)	2	(B)	4
(C)	6	(D)	16

d. If S/N ratio of signal is 15 and bandwidth is 5 kHz, the channel capacity is

(A) 10 Kbits/s	(B) 20 Kbits/s
(C) 30 Kbits/s	(D) 40 Kbits/s

e. Cyclic codes are subclass of

(A)	Convolution codes	(B) Linear Block codes
(C)	BCH codes	(D) Reed Solomon Codes

f. The no of 1s in the length of PN sequence for a 4 stage shift register is

(A) 5	(B) 6
(C) 7	(D) 8

g. Slope overload in delta modulation can be avoided using

(A) $\Delta/T_s \ge M'(t)$	$(\mathbf{B}) \ \Delta/\mathrm{T}_{\mathrm{s}} \leq \mathrm{M}'(\mathrm{t})$
(C) $\Delta/T_s = M'(t)$	(D) None

AMIETE - ET (OI D SCHEME)

4

h. The probability of error in ASK system

(A) $\frac{1}{2} \operatorname{erfc}[\mathrm{E}_{\mathrm{s}}/4\eta]^{1/2}$	(B) $\frac{1}{2} \operatorname{erfc}[\mathrm{E}_{\mathrm{s}}/\eta]^{1/2}$
(C) $\frac{1}{2} \operatorname{erfc}[0.6 \mathrm{E}_{\mathrm{s}}/\eta]^{1/2}$	(D) $\frac{1}{2} \operatorname{erfc}[E_s/2\eta]^{1/2}$

StudentBounty.com i. A DS spread spectrum has a 2.4576 Mcps code clock rate and 19.2 Kbps information rate. What is processing gain:

(A) 64	(B) 128
(C) 256	(D) 512

j. The rate efficiency of (6,3) block code in % is

(A) 25	(B) 50
(C) 75	(D) 100

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain how ISI can be reduced by pulse . Compare the performance degradation of communication filter due to noise interference and ISI.	(8)
	b.	Compare FH – SS with DS – SS technique.	(8)
Q.3	a.		(8)
	b.	Represent the data bits 101001 by the bipolar NRZ waveform. Sketch the following digital modulation scheme for these waveform (i) ASK (ii) FSK (iii) PSK	(8)
Q.4	a.	A Systematic block code (6, 3) has a generator matrix as follows: $G = \begin{bmatrix} 100:110\\010:011\\001:111 \end{bmatrix}$ Find all its code vectors of this code.	(8)
	b.	Explain convolution codes. Design an encoder for convolution code using 3 shift register and taking 4 bit length of input data stream.	(8)
Q.5	a.	$H = \begin{bmatrix} 101100\\ 110010\\ 011001 \end{bmatrix}$ (i) Determine the generator matrix (ii) Find the code word that begin 101	(8)
			(0)

AE21 / DEC _ 2010

2

AMIETE - FT (OI D SCHEME)

www.StudentBounty.com Homework Help & Pastpapers

b. Draw the state diagram, and Trell's diagram for K = 3, code rate =

generated by $g_1(X) = X^2 + X$ $g_2(X) = X + 1$ $g_3(X) = X^2 + X + 1$

- StudentBounty.com a. Explain spread spectrum modulation. What is Pseudorandom Noise 0.6 sequence? Write at least 6 properties for PN sequences. (8)
 - b. A Pseudorandom Noise sequence is generated using a four stage linear feedback shift register. A modulo 2 adder is used between output of fourth and third shift register. A feedback path is from adder to input of first shift register. The chip rate is 10^7 chips per second, calculate:

(8)

- **0.7** a. Show that the impulse response of a matched filter h(t) matched to a signal s(t) is h(t) = Ks(T-t). Where T is the symbol duration and k is the proportionately constant. (8)
 - b. Determine the probability of error P_e in frequency shift keying (FSK) (8)
- **Q.8** a. Draw the block diagram of delta modulation system and explain its working. (8)
 - b. A decimal number N was transmitted using seven bit even parity Hamming code. After transmission, it was received as 1101101. Is there any error introduced during transmission? What is the value of N? (8)
- Q.9 a. Derive an expression for output signal to quantization noise ratio in a commercial PCM system. (8)
 - b. A certain 8 bit uniform quantization PCM system can accommodate a signal ranging from -1V to +1V. The RMS value of the signal is 0.5 V. Calculate the signal to quantization noise ratio and express it in dB. (8)

AE21 / DEC _ 2010

2