
AMIETE - ET (OLD SCHEME)

Code: AE08 **Time: 3 Hours** Subject: CIRCUIT THEORY & D Max. Marks

DECEMBER 2010

NOTE: There are 9 Questions in all.

- StudentBounty.com • Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour • of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

(A) $b - n + 1$ branches	(B) n − 1 bran
(C) $b - n - 1$ branches	(D) n branches

c. The transform network representation of the inductor with initial current is

(A)
$$V_L(s) = L_s I_L(s) + L I_L(0^-)$$
 (B) $I_L \frac{\langle s \rangle}{L_s} = V_L(s) + L I_L(0^-)$
(C) $V_L \frac{\langle s \rangle}{L_s} = I_L(s) + L I_L(0^-)$ (D) $L_s I_L(s) = V_L(s) + L I_L(0^-)$

d. When the damping ratio $\xi = 0$, the poles of the system will be

(A)	real and repeated	(B) real and unrepeated
(C)	Complex conjugate	(D) imaginary

e. The rms value of a half wave rectified output is

1 3 7 /

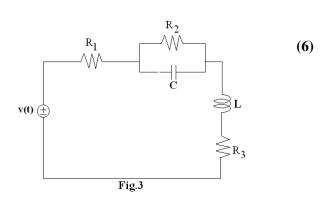
(A) $I_m/2$	(B) $I_m / \sqrt{2}$
(C) $I_m / \sqrt{3}$	(D) $\frac{I_{m}}{2\sqrt{3}}$

f. The condition AD-BC = 1 for a two port network implies that the network is a

(A) Reciprocal Network	(B) Lumped element Network
(C) Lossless Network	(D) Unilateral element Network

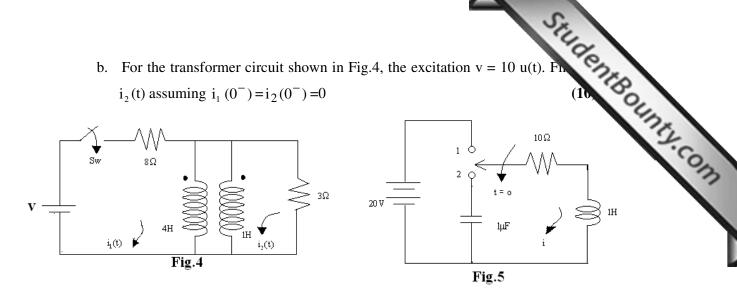
4

AFOR / DFC _ 2010

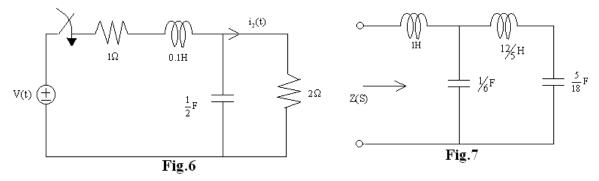

AMIETE - ET (OLD SCHEME)

www.StudentBounty.com nework Help & Pastpapers

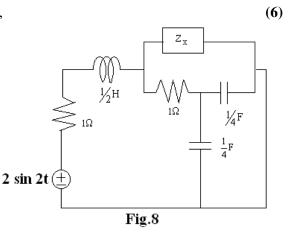
- g. A double tuned circuit have
 - (A) 4 real poles
 - (C) 2 pairs of conjugate poles
- StudentBounts.com (B) 2 real and 2 complex conjugate po
- (D) A pair of conjugate poles and zeros.
- h. A polynomial P(s) is said to be Hurwitz if
 - (A) P(s) is real when S is real
 - (B) the roots of P(s) have real parts which are zero or negative
 - (C) both (A) and (B) (A)
 - (**D**) none of the above
- i. The property of an RL impedance is that poles and zeros are located
 - (A) On the negative real axis, and they alternate
 - (B) On the positive real axis, and they alternate
 - (C) On the j ω axis, and they alternate.
 - (**D**) On the negative $j\omega$ axis, and they alternate.
- j. Linear phase response of the filter is obtained by
 - (A) Butterworth **(B)** Chebyshev (C) Bessel (**D**) None of the above


Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

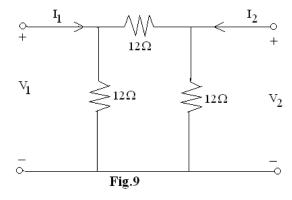
- 10Ω Q.2 a. Explain any two dependent sources. (8) 4A20V v₃ 2Ω 5Ω 10A Fig.2
 - b. Determine the nodal voltages V_1 , V_2 and V_3 in the circuit shown in Fig.2. (8)
- Q.3 a. Draw the dual of the network shown in Fig.3.



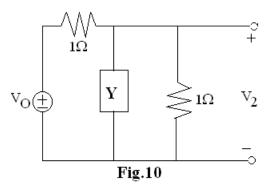
AE08 / DEC = 2010


CHEME)

- Q.4 a. In the circuit shown in Fig.5, switch k is changed from 20V to 1μ F at time t=0, steady state condition having been reached before switching, find the values of i, $\frac{di}{dt}$ at t =0+. (6)
 - b In the network shown in Fig.6, the switch closes at t =0. If $v(t) = 0.1 e^{-5t}$ and all the initial currents and voltages are zero. Find the current $i_2(t)$ by Norton's theorem. (10)



- Q.5 a. For the network shown in Fig./, find the transform impedance Z(s) in the factorised form. (10)
 - b. Describe sine function using exponential excitation. (6)
- **Q.6** a. For the network shown in Fig.8, determine the impedance Z_x such that maximum power is transferred from the source to load of impedance Z_x


AFAR / DEC _ 2010

- StudentBounty.com b. The system response of tuned circuit is given by $H(s) = \frac{5}{s^2 + 2s + 5}$. Determine ω_{max} , $| H(j\omega_{max})|$, the half power point ω_C and $|H(j\omega_C)|$
- a. Obtain Y parameters interms of Z- parameters **Q.7**
 - b. Determine the h-parameters for the network shown in Fig.9.

a. Determine whether the function $F(s) = \frac{s^2 + 4}{s^3 + 3s^2 + 3s + 1}$ is a positive real Q.8 function. (8)

b. For the network shown in Fig.10, find Y when $\frac{V_2}{V_0} = \frac{1}{2+Y} = \frac{s(s^2+3)}{2s^3+s^2+6s+1}$ synthesize Y as an LC – admittance.

- Q.9 Determine the system fur
 - (i) Ripple of $\frac{1}{2}$ db in band $|\omega| \le 1$
 - (ii) At $\omega = 3$, amplitude is down 30db

(8)

(16)

Λ