DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following:
a. $u(n)-u(n-1)$ will result in
(A) $\mathrm{u}(\mathrm{n})$
(B) $\mathrm{u}(-\mathrm{n}-1)$
(C) $\delta(\mathrm{n})$
(D) $\delta(\mathrm{n}-1)$
b. The system characterized by the equation $y(t)=a x(t)+b$ is
(A) linear for any value of b.
(B) linear if $\mathrm{b}<0$
(C) linear if $\mathrm{b}>0$.
(D) non- linear.
c. Laplace transformation of $e^{-a t} t^{n}$
(A) $t /(s+a)^{n}$
(B) $\mathrm{a} /(\mathrm{s}+\mathrm{a})^{\mathrm{n}+1}$
(C) $n!/(s+a)^{n+1}$
(D) none of above
d. The system described by $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$ is
(A) unstable
(B) stable
(C) can't defined.
(D) marginally stable.
e. System function $H(\omega)$ equals
(A) $\mathrm{Y}(\omega) * \mathrm{X}(\omega)$
(B) $\mathrm{Y}(\omega) \times \mathrm{X}(\omega)$.
(C) $\mathrm{Y}(\omega) / \mathrm{X}(\omega)$.
(D) $X(\omega) / Y(\omega)$
f. Z-transform converts convolution of time signal into
(A) division
(B) sum
(C) multiplication
(D) modulo sum
g. Signal $x(t)=e^{-a t} u(t), a>0$ is a
(A) energy signal
(B) power signal
(C) data is insufficient
(D) none of the above.
h. Tossing a dice is an example of
(A) continuous random variable.
(B) conditional random variable
(C) cumulative random variable
(D) discrete random variable.
i. The Fourier transform of $u(t)$ is
(A) $1 /(\mathrm{j} 2 \pi \mathrm{f})$
(B) $\mathrm{j} 2 \pi \mathrm{f}$
(C) $1+\mathrm{j} 2 \pi \mathrm{f}$
(D) none of the above
j. Convolution of $\delta(\mathrm{n})$ with itself gives
(A) $2 \delta(\mathrm{n})$
(B) $\mathrm{u}(\mathrm{n})$
(C) δ (n)
(D) r (n)

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. (i) Derive the expression for the DFS, for a given $\mathrm{x}(\mathrm{n})$ which is periodic with fundamental period N .
(ii) Prove $a_{k}=a_{k+N}$
(iii) if $\mathrm{x}(\mathrm{n})$ is real and even a_{k} are real and even.
b. Discuss the difference between energy and power signal.
Q. 3 a. Compute the convolution $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$ for $\mathrm{x}(\mathrm{t})=\mathrm{e}^{2 \mathrm{t}} \mathrm{u}(1-\mathrm{t})$ and $h(t)=e^{-t} u(t+3)$.
b. If $x(n)=\cos (n \pi / 2)$ where $0 \leq n \leq 3$. Plot the following
(i) $x(n)$
(ii) $\mathrm{x}(\mathrm{n}-2)$
(iii) $\mathrm{x}(-3-\mathrm{n})$
(iv) $\mathrm{x}(\mathrm{n}-1) \delta(\mathrm{n}+2)$
Q. 4 a. Two signals $x(t)=\cos 2 \pi t$ and $y(t)=\cos 100 \pi t$ are sampled with sampling frequency of 40 Hz . Obtain the associated discrete time signals $x(n)$ and $y(n)$ and comment on the result.
(10)
b. Define Duality: using the property of Duality find the Fourier transform $G(j \omega)$ of the signal $\mathrm{g}(\mathrm{t})=2 / 1+\mathrm{t}^{2}$.
Q. 5 a. Consider the periodic signal $\mathrm{x}(\mathrm{t})$ shown in Fig. 1 and given by

$$
\mathrm{x}(\mathrm{t})=\left\{\begin{array}{cc}
\mathrm{At}^{2} & 0 \leq \mathrm{t}<\mathrm{T}_{0} \tag{8}\\
0 & \mathrm{~T}_{0} \leq \mathrm{t}<2 \mathrm{~T}_{0}
\end{array}\right.
$$

if $\mathrm{a}_{0}=1 / 6$, show that $\mathrm{AT}_{0}^{2}=1$.

Fig1.
b. Consider the first order causal LTI system described by the difference equation $y(n)-a y(n-1)=x(n)$, with \mid a $\mid<1$. Obtain
(i) frequency response of the system
(ii) impulse response of the system
Q. 6 a. $\operatorname{For} \mathrm{X}(\mathrm{s})=\frac{1}{s+1 / 2}, \operatorname{Re}\{\mathrm{~s}\}>-\frac{1}{2} \quad$; draw Pole- Zero plot geometrically.
b. Consider an LTI system with impulse response $h(n)=\alpha^{n} u(n)$ with $|\alpha|<1$ and the input to the system is $x(n)=\beta^{n} u(n)$ with $|\beta|<1$ computer $y(n)$.
Q. 7 a. The input to an LTI system is $x(t)=e^{-3 t} u(t)$, then the output is $y(t)=\left\lfloor e^{-t}-e^{-2 t}\right\rfloor u(t)$. Determine
(i) the system function
(ii) ROC
(iii) Differential equation.
b. Explain the concept of unilateral Z Transform with a suitable example.
c. For $\mathrm{x}(\mathrm{z})=4 \mathrm{z}^{2}+2+3 \mathrm{z}^{-1}, 0<|\mathrm{z}|<\infty$, determine $\mathrm{x}(\mathrm{n})$ and plot the sequence.
Q. 8 a. Find the z - transform and ROC for the signal

$$
\begin{equation*}
x(n)=(1 / 3)^{n} \sin \left(\frac{n \pi}{4}\right) u(n) \tag{8}
\end{equation*}
$$

b. State dirichlet condition of Fourier Transform. Determine and plot the continuous - time Fourier transform of
(i) The unit impulse
(ii) The rectangular pulse
Q. 9 Write short notes on any FOUR:
(i) Random Variables \& Gaussian Random variable
(ii) Sum of random Processes
(iii) Stationary and Non- stationary Random Processes
(iv) Mean and Standard deviation
(v) Ergodic process

