StudentBounty.com AMIETE – CS/IT (NEW SCHEME) – Code: AC64/AT64

Subject: DESIGN & ANALYSIS OF ALGORITHMS

Time: 3 Hours

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following: (2×10)

Max. Marks: 100

a. Which complexity has a maximum growth rate?

(A) $O(n^2)$	(B) O (n^3)
$(\mathbf{C}) \mathbf{O} (\mathbf{n}^{100})$	(D) O (n!)

b. What is the best complexity in case of sorting by comparison?

(A) $O(n^2)$	(B) O (n)
(C) O (n log n)	(D) Constant

c. Which sorting algorithm has worst space complexity amongst these?

(A) Selection Sort	(B) Insertion Sort
(C) Merge Sort	(D) Quick Sort

d. Travelling Salesman problem belongs to complexity class _____

(A) P	(B) NP
(C) P & NP	(D) None of above

e. What is the prerequisite for binary search?

(A) Array	(B) LinkList		
(C) Sorted List	(D) Reverse sorted list		

f. Which Data Structure is most space efficient?

(A) Array	(B) LinkList
(C) B-Tree	(D) Circular Queue

g. What is the complexity of sorting by counting?

(A) Linear	(B) Quadratic
(C) Polynomial	(D) Constant

AC64/AT64 / DEC. - 2010

(

AMIETE - CS/IT (NEW SCHEME)

1

	h.	Which algorithm yields best runn	ing time for shortest path?	120
		(A) Prim's Algorithm(C) Dijkstra's Algorithm	(B) Kruskal's Algorithm(D) All the same	crudentBounts.
	i.	Which is the best approach to solv	ve 8 queens puzzle?	2
		(A) Dynamic Programming(C) Backtracking	(B) Greedy Strategy(D) Branch and Bound	
	j.	What is the worst case complexity	y of quick sort?	
		(A) O (n) (C) O (n^3)	(B) O (n^2) (D) O $(n!)$	
		Answer any FIVE Ques	stions out of EIGHT Questions.	
Q.2	a.	-	ptotic notations? Explain in detail with	suitable (7)
	b.	What is recursion? How do you a	analyse recurrences with the master method?	(9)
Q.3	a.	Linear search $(A[0,, n-1], K$ for $i \leftarrow 0$ to $n - 1$ do if key == A[i] return i (i) Apply this algorithm to s key value 74.	• •	
	b.	Define an algorithm? What are the	he characteristics of a good algorithm?	(6)
Q.4	a.	Explain Merge Sort and find its o	complexity through the recurrence equation.	(10)
	b.	Explain the procedure for Strasse	en's Matrix multiplication.	(6)
Q.5	a.	Write the algorithm for insertion	and deletion in binary search tree.	(7)
	b.	Write the algorithm for heapsort. 1, 8, 6, 5, 3, 7, 4.	. Explain the heapify procedure in detail using	g the list (9)
Q.6	a.	Write and explain the algorithm	for DFS method for graphs and find its compl	
	b.	What is topological sorting prol topological sorting problem for t	blem? Apply the DFS-based algorithm to s he following diagraphs	(8) olve the
		C1 (C2)		
		\smile	\smile	

AMIETE - CS/IT (NEW SCHEME)

www.StudentBounty.com Homework Help & Pastpapers

- **Q.7** a. What is a minimum spanning tree? Write the Kruskal's Algorithm for MST a analyze its complexity.
 - b. Write and explain the Floyd-Warshall Algorithm for all pairs shortest paths.
- **Q.8** What are hash tables? Explain collision resolution with chaining method. a.
- StudentBounty.com What is a stable sorting algorithm? Write and explain counting sort algorithm using b. array 62, 31, 84, 96, 19, 47. Show values in array after each pass. (8)
- Q.9 What is Backtracking? Show by an algorithm how backtracking is applied to solve the a. Hamiltonian circuit problem? (8)
 - b. Solve the following instance of the knapsack problem by the branch-and-bound algorithm. (W = 15)(8)

Item	Weight	Profit
1	5	\$40
2	7	\$35
3	2	\$18
4	4	\$4
5	5	\$10
6	1	\$2

3