NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q . 1}$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which complexity has a maximum growth rate?
(A) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(B) $\mathrm{O}\left(\mathrm{n}^{3}\right)$
(C) $\mathrm{O}\left(\mathrm{n}^{100}\right)$
(D) $\mathrm{O}(\mathrm{n}!)$
b. What is the best complexity in case of sorting by comparison?
(A) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(B) O (n)
(C) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(D) Constant
c. Which sorting algorithm has worst space complexity amongst these?
(A) Selection Sort
(B) Insertion Sort
(C) Merge Sort
(D) Quick Sort
d. Travelling Salesman problem belongs to complexity class \qquad
(A) P
(B) NP
(C) P \& NP
(D) None of above
e. What is the prerequisite for binary search?
(A) Array
(B) LinkList
(C) Sorted List
(D) Reverse sorted list
f. Which Data Structure is most space efficient?
(A) Array
(B) LinkList
(C) B-Tree
(D) Circular Queue
g. What is the complexity of sorting by counting?
(A) Linear
(B) Quadratic
(C) Polynomial
(D) Constant
h . Which algorithm yields best running time for shortest path?
(A) Prim's Algorithm
(B) Kruskal's Algorithm
(C) Dijkstra's Algorithm
(D) All the same
i. Which is the best approach to solve 8 queens puzzle?
(A) Dynamic Programming
(B) Greedy Strategy
(C) Backtracking
(D) Branch and Bound
j. What is the worst case complexity of quick sort?
(A) O (n)
(B) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(C) $\mathrm{O}\left(\mathrm{n}^{3}\right)$
(D) $\mathrm{O}(\mathrm{n}!)$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. What are the various asymptotic notations? Explain in detail with suitable illustrations.
b. What is recursion? How do you analyse recurrences with the master method?
Q. 3 a. Consider the following algorithm for the searching problem:

Linear search (A[0,n - 1], Key)
for $\mathrm{i} \leftarrow 0$ to $\mathrm{n}-1$ do
if key $==\mathrm{A}[\mathrm{i}]$
return i
(i) Apply this algorithm to search the list $10,92,38,74,56,19,82,37$ for a key value 74.
(ii) Is this algorithm efficient? Calculate its best \& worst case complexity.(10)
b. Define an algorithm? What are the characteristics of a good algorithm?
Q. 4 a. Explain Merge Sort and find its complexity through the recurrence equation.
b. Explain the procedure for Strassen's Matrix multiplication.
Q. 5 a. Write the algorithm for insertion and deletion in binary search tree.
b. Write the algorithm for heapsort. Explain the heapify procedure in detail using the list $1,8,6,5,3,7,4$.
Q. 6 a. Write and explain the algorithm for DFS method for graphs and find its complexity.
b. What is topological sorting problem? Apply the DFS-based algorithm to solve the topological sorting problem for the following diagraphs

Show value of dat
(8)
Q. 7 a. What is a minimum spanning tree? Write the Kruskal's Algorithm for MST analyze its complexity.
b. Write and explain the Floyd-Warshall Algorithm for all pairs shortest paths.
Q. 8 a. What are hash tables? Explain collision resolution with chaining method.
b. What is a stable sorting algorithm? Write and explain counting sort algorithm using array $62,31,84,96,19,47$. Show values in array after each pass.
Q. 9 a. What is Backtracking? Show by an algorithm how backtracking is applied to solve the Hamiltonian circuit problem?
b. Solve the following instance of the knapsack problem by the branch-and-bound algorithm. ($\mathrm{W}=15$)

Item	Weight	Profit
1	5	$\$ 40$
2	7	$\$ 35$
3	2	$\$ 18$
4	4	$\$ 4$
5	5	$\$ 10$
6	1	$\$ 2$

