AMIETE - CS/IT (NEW SCHEME) - Code: AC60 / AT6

Subject: COMPUTER GRAPHICS

Time: 3 Hours

DECEMBER 2010

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:			
	a. Aspect ratio of a display device is			
		s height (B) the ratio of its height to its area its area (D) the ratio of its width to its height		
	b. A raster image is stored in a computer as			
	(A) shades(C) objects	(B) lines(D) an array of numerical values		
	c. OpenGL is well suited for	·		
	(A) 2D drawings(C) complex 3D scenes	(B) simple 3D drawings(D) line drawings		
	d. A for a curve produces different points on the curve, based on the value of a parameter.			
	(A) curvature form(C) parametric form	(B) implicit form(D) complex form		
	e. The Cohen-Sutherland alg	gorithm quickly detects and dispenses with two		
	(A) cohen and sutherland(C) divide and conquer	(B) trivial accept and trivial reject(D) none of these		
	f. The process of applying several transformations in succession to form one overall transformation is called			
	 (A) viewport transformations (B) window transformations (C) concatenating the transformations (D) arbitrary transformations 			

			SEL
	g.	In projection, all th	ree principal axes are foreshortened equal.
		(A) isometric(C) trimetric	ree principal axes are foreshortened equal. (B) dimetric (D) metric and are highly directional. (B) Diffuse reflections
	h.	are more mirror-like	and are highly directional.
		(A) Diffuse refractions(C) Specular reflections	(B) Diffuse reflections(D) Diffuse scattering
	i.	The operation is known	own as BitBLT.
		(A) bit boundary block transfer(C) bit transfer	(B) bit black transfer(D) bit transformation
	j.	describes the visual smoothness of	s a more relaxed form of continuity that of a curve.
		(A) Parametric(C) Visual	(B) Linear(D) Geometric
		•	ons out of EIGHT Questions. carries 16 marks.
Q.2	a.	What are output primitives? Exp	plain one useful categorization of these. (10)
	b.	Explain how an image is creatisplay.	ated and displayed in computer with raster (6)
Q.3	a.	Explain the five functions that which the OpenGL program will	initialize and display the screen window in produce graphics. (10)
	b.	What is the implicit form that benefit of using the implicit form	describes the shape of a curve? What is the n? (6)
Q.4	a.	Write the pseudo code for Coher	n-Sutherland line clipper. (8)
	b.	Discuss the different cases algorithm.	of Sutherland-Hodgman Polygon Clipping (8)
Q.5	a.		tes through 45 degrees, then scales in x by 1.5 anslates through (3, 5). Find the image under 1, 2). (10)
	b.	Write the three matrices that through an angle θ about x-axis,	represent transformations that rotate points y-axis, and z-axis. (6)

		27	ila
Q.6	a.	Consider the polygon with vertices $P_0 = (6, 1, 4)$, $P_1 = (7, 0, 9)$, and $P_2 = 2$). Find the normal to this polygon using simple approach. What ar problems with this simple approach? How do you solve these problems?	
	b.	Discuss the different types of orthographic projections.	(8)
Q.7	a.	What is diffuse scattering?	(6)
	b.	What is Mach band in connection with flat shading?	(6)
	c.	What is depth buffer algorithm?	(4)
Q.8	a.	Discuss the usefulness of combining two pixmaps. Explain how you can a pixmap from one section of memory to another.	copy (8)
	b.	What is aliasing? Briefly discuss the commonly used antialiasing techniq	ues. (8)
Q.9	a.	What is the de Casteljau algorithm?	(4)
	b.	Write the parametric form of Bezier curve based on four points. Discuss	

its properties.

(12)