NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following:
a. If $\mathrm{A} \times \mathrm{B}=\{(3,2),(3,4),(5,2),(5,4)\}$, then
(A) $\mathrm{A}=\{3,5\} \mathrm{B}=\{2,4\}$
(B) $\mathrm{A}=\{4,3\} \mathrm{B}=\{5,2\}$
(C) $\mathrm{A}=\{4,2\} \quad \mathrm{B}=\{3,5\}$
(D) $\mathrm{A}=\{2,4\} \mathrm{B}=\{3,5\}$
b. If R is a symmetric relation then
(A) $R \cap R^{-1} \neq \phi$
(B) $R \cap R^{-1}=\phi$
(C) $R \cup R^{-1}=\phi$
(D) $R \cup R^{-1}=R$
c. If $\mathrm{f}=\{(1,2),(3,5),(4,1)\}$ and $\mathrm{g}=\{(2,3),(5,1),(1,3)\}$ then
(A) $\mathrm{fog}=\{(1,3),(4,5),(2,2)\}$
(B) $f \circ g=\{(2,5),(5,2),(1,5)\}$
(C) $\mathrm{fog}=\{(1,3),(3,1),(4,3)\}$
(D) $f o g=\{(1,5),(3,4),(5,2)\}$
d. If $a \in B$ (Boolean algebra) then $a+a+a+a$ is
(A) 4 a
(B) 3 a
(C) 2 a
(D) a
e. Conjunctive normal form of Boolean function $f(x, y)=x+x^{\prime} y$ is
(A) $x+y$
(B) $x y+x y^{\prime}+x^{\prime} y$
(C) $x^{\prime}+y$
(D) none of these
f. Complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is Eularian if
(A) m is odd and n is even
(B) both m and n are even
(C) both m and n are odd
(D) m is even and n is odd
g. If p : " He is rich" and q: " he is unhappy" then choose the correct formula for the statement "He is poor or else he is both rich and unhappy"
(A) $\sim p \vee(p \wedge \sim q)$
(B) $p \wedge(p \wedge \sim q)$
(C) $\sim p \vee(p \wedge q)$
(D) $p \vee(p \leftrightarrow q)$
h. The number of solutions to the equation $x+y-z=7$ such that $x>0, y>2$ and $z>2$ is
(A) 10
(B) 15
(C) 25
(D) 8
i. The number of internal (non pendant) vertices in a full binary tree of n-vertices is
(A) $(\mathrm{n}+1)$
(B) $(\mathrm{n}+1) / 2$
(C) $\mathrm{n}(\mathrm{n}+1) / 2$
(D) $(\mathrm{n}-1) / 2$
j. The language $L(G)$ generated by the productions $S \rightarrow a S \mid a$ is
(A) $\mathrm{L}(\mathrm{G})=\mathrm{a}^{*}$
(B) $\mathrm{L}(\mathrm{G})=(\mathrm{a}$, aaa, aaaaaa)
(C) $\mathrm{L}(\mathrm{G})=\mathrm{a}^{+}$
(D) $\mathrm{L}(\mathrm{G})=\{ \}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Define the principle of inclusion and exclusion. Determine the number of integers between 1 and 300 that are divisible by any of the integers $2,3,5$ and 7.
b. Define bijective mapping. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-7$. Show that (i) f is one-one and onto (ii) Find a formula for inverse $\mathrm{f}^{-1}: \mathrm{R} \rightarrow \mathrm{R}$.
Q. 3 a. (i) Determine the validity of the following argument:
"If wages increase, there will be inflation. The cost of living will not increase if there is no inflation. Wages will increase; therefore the cost of living will not increase".
(ii) Show that $(\mathrm{p} \wedge(\sim \mathrm{p} \vee \mathrm{q})) \vee(\mathrm{q} \wedge \sim(\mathrm{p} \wedge \mathrm{q})) \equiv \mathrm{q}$.
b. Show using the principle of mathematical induction that any positive integer greater than or equal to 2 is either prime or a product of prime.
Q. 4 a. Define composite relation. If R^{-1} and S^{-1} are the inverses of relation R and S respectively, then prove that $(\mathrm{S} o \mathrm{R})^{-1}=\mathrm{R}^{-1} o \mathrm{~S}^{-1}$.
b. Let I be the set of integers and R be a binary relation defined on set I such that $R=\{(x, y) \mid x \equiv y(\bmod 3), x \in I, y \in I\}$.
(i) Show that R is an equivalence relation.
(ii) Find the quotient set (I/R) of I induced by R.
Q. 5 a. (i) Define Boolean algebra.
(ii) Let $\left(\mathrm{D}_{63}, \leq\right)$ be a lattice of all positive divisors of 63 and $\mathrm{x} \leq \mathrm{y}$ means x divides y. Draw the Hasse diagram and prove or disprove the statement: $\left(\mathrm{D}_{63}, \leq\right)$ is a Boolean algebra.
$(4+4)$
b. Consider the lattice L given below:

(i) Find all sub-lattices with 5-elements.
(ii) Find atoms.
(iii) Find complement of a and b if they exists.
(iv) Is L distributive? Complemented?
Q. 6 a. Prove or disprove:
(i) Every simple Euler graph with an even number of vertices has an even number of edges.
(ii) Peterson's graph is Hamiltonian.
b. Apply Prim's algorithm to determine the minimal spanning tree in the given graph:

Q. 7 a. In a shipment of 50 CDs 10 are defective. Determine
(i) In how many ways we can select 35 CDs.
(ii) In how many ways we can select 35 non-defective CDs.
(iii) In how many ways we can select 35 CDs containing exactly 5 defective CDs.
(iv) In how many ways we can select 35 CDs containing at least 5 defective CDs.
b. Solve the difference equation $a_{n}-6 a_{n-1}+9 a_{n-2}=3^{n}$, with the initial conditions $\mathrm{a}_{0}=0$ and $\mathrm{a}_{1}=1$.
Q. 8 a. Define binary tree. Write the pre-order, post-order and in-order traversal for the given tree.
(2+2+2+2)

b. Following table gives the value of the function $f(x, y, z)$. Find the corresponding function. Draw a simplified circuit diagram of the function. Also find the minterm normal form of $f(x, y, z)$.

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Q. 9 a. Explain Chomsky's hierarchy. Give suitable example in each case.
b. Design a deterministic finite state automaton that accepts all strings over $\{0,1\}$ starting with 01 and contains 110 .

