## AMIETE - CS (OLD SCHEME)

Code: AC10 Time: 3 Hours

StudentBounty.com Subject: DISCRETE STRUCTURE

Max. Marks: 100

# **DECEMBER 2010**

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### Q.1 Choose the correct or best alternative in the following:

 $(2 \times 10)$ 

a. If  $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ , then

| $(\mathbf{A}) \mathbf{A} = \{3, 5\} \mathbf{B} = \{2, 4\}$ | <b>(B)</b> $A = \{4, 3\} B = \{5, 2\}$ | ł |
|------------------------------------------------------------|----------------------------------------|---|
| (C) $A = \{4, 2\} B = \{3, 5\}$                            | <b>(D)</b> $A = \{2, 4\} B = \{3, 5\}$ | } |

b. If R is a symmetric relation then

| (A) $R \cap R^{-1} \neq \phi$ | $(\mathbf{B}) \ R \cap R^{-1} = \phi$ |
|-------------------------------|---------------------------------------|
| (C) $R \cup R^{-1} = \phi$    | $(\mathbf{D}) \ R \cup R^{-1} = R$    |

c. If  $f = \{(1, 2), (3, 5), (4, 1)\}$  and  $g = \{(2, 3), (5, 1), (1, 3)\}$  then

| (A) $fog = \{(1, 3), (4, 5), (2, 2)\}$ | <b>(B)</b> fog = { $(2, 5), (5, 2), (1, 5)$ } |
|----------------------------------------|-----------------------------------------------|
| (C) $fog = \{(1, 3), (3, 1), (4, 3)\}$ | <b>(D)</b> fog = { $(1, 5), (3, 4), (5, 2)$ } |

- d. If  $a \in B$  (Boolean algebra) then a + a + a + a is (A) 4a **(B)** 3a (C) 2a (**D**) a
- e. Conjunctive normal form of Boolean function f(x, y) = x + x'y is

| $(\mathbf{A})\mathbf{x} + \mathbf{y}$ | (B) xy + xy' + x'y         |
|---------------------------------------|----------------------------|
| (C) $x' + y$                          | ( <b>D</b> ) none of these |

1

f. Complete bipartite graph  $K_{m,n}$  is Eularian if

| (A) m is odd and n is even | ( <b>B</b> ) both m and n are even  |
|----------------------------|-------------------------------------|
| (C) both m and n are odd   | ( <b>D</b> ) m is even and n is odd |

AC10 / DEC \_ 2010

AMIETE = CS (OI D SCHEME)

g. If p: "He is rich" and q: "he is unhappy" then choose the correct formula for the statement "He is poor or else he is both rich and unhappy"

| $(\mathbf{A}) \sim p \lor (p \land \sim q)$ | <b>(B)</b> $p \land (p \land \sim q)$     |
|---------------------------------------------|-------------------------------------------|
| (C) ~ $p \lor (p \land q)$                  | <b>(D)</b> $p \lor (p \leftrightarrow q)$ |

StudentBounty.com h. The number of solutions to the equation x + y - z = 7 such that x > 0, y > 2and z > 2 is

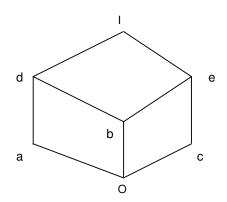
| ( <b>A</b> ) 10 | <b>(B)</b> 15 |
|-----------------|---------------|
| (C) 25          | <b>(D)</b> 8  |

i. The number of internal (non pendant) vertices in a full binary tree of n-vertices is

| (A) (n + 1)                 | <b>(B)</b> $(n + 1) / 2$ |
|-----------------------------|--------------------------|
| ( <b>C</b> ) $n(n + 1) / 2$ | <b>(D)</b> $(n-1)/2$     |

j. The language L(G) generated by the productions  $S \rightarrow aS \mid a$  is

| $(\mathbf{A}) \mathbf{L}(\mathbf{G}) = \mathbf{a}^*$ | <b>(B)</b> $L(G) = (a, aaa, aaaaaa)$ |
|------------------------------------------------------|--------------------------------------|
| ( <b>C</b> ) $L(G) = a^+$                            | <b>(D)</b> $L(G) = \{ \}$            |


### Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. Define the principle of inclusion and exclusion. Determine the number of Q.2 integers between 1 and 300 that are divisible by any of the integers 2, 3, 5 and 7. (2+6)
  - b. Define bijective mapping. Let f:  $R \rightarrow R$  be defined as f(x) = 3x 7. Show that (i) f is one-one and onto (ii) Find a formula for inverse  $f^{-1}: R \rightarrow R.$ (3+3+2)
- Q.3 a. (i) Determine the validity of the following argument: "If wages increase, there will be inflation. The cost of living will not increase if there is no inflation. Wages will increase; therefore the cost of living will not increase". (4) (ii) Show that  $(p \land (\sim p \lor q)) \lor (q \land \sim (p \land q)) \equiv q$ . (4)
  - b. Show using the principle of mathematical induction that any positive integer greater than or equal to 2 is either prime or a product of prime. (8)
- a. Define composite relation. If  $R^{-1}$  and  $S^{-1}$  are the inverses of relation R and **Q.4** S respectively, then prove that  $(S \rho R)^{-1} = R^{-1} \rho S^{-1}$ . (2+6)
  - b. Let I be the set of integers and R be a binary relation defined on set I such that  $R = \{(x, y) | x \equiv y \pmod{3}, x \in I, y \in I\}.$ 
    - (i) Show that R is an equivalence relation.
  - (ii) Find the quotient set (I/R) of I induced by R. (4+4)

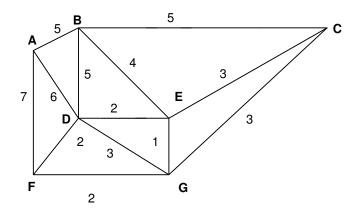
AC10 / DEC \_ 2010 AMIETE = CS (OI D SCHEME)2

> www.StudentBounty.com nework Help & Pastpapers

- StudentBounty.com Q.5 a. (i) Define Boolean algebra. (ii) Let  $(D_{63}, \leq)$  be a lattice of all positive divisors of 63 and  $x \leq y$  means x divides y. Draw the Hasse diagram and prove or disprove the statement:  $(D_{63}, \leq)$  is a Boolean algebra.
  - b. Consider the lattice L given below:



- (i) Find all sub-lattices with 5-elements.
- (ii) Find atoms.
- (iii) Find complement of a and b if they exists.
- (iv) Is L distributive? Complemented?


#### a. Prove or disprove: Q.6

(i) Every simple Euler graph with an even number of vertices has an even number of edges.

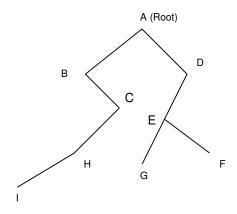
(ii) Peterson's graph is Hamiltonian. (4+4)

(2+2+2+2)

b. Apply Prim's algorithm to determine the minimal spanning tree in the given graph: (8)



- **O.7** a. In a shipment of 50 CDs 10 are defective. Determine
  - (i) In how many ways we can select 35 CDs.
  - (ii) In how many ways we can select 35 non-defective CDs.


(iii) In how many ways we can select 35 CDs containing exactly 5 defective CDs.

AC10 / DEC \_ 2010 AMIETE = CS (OI D SCHEME)С

> www.StudentBounty.com nework Help & Pastpapers

(iv) In how many ways we can select 35 CDs containing at least 5 defective CDs. (2+2+2+2)

- b. Solve the difference equation  $a_n 6a_{n-1} + 9a_{n-2} = 3^n$ , with the initial conditions  $a_0 = 0$  and  $a_1 = 1$ .
- StudentBounts.com **Q.8** a. Define binary tree. Write the pre-order, post-order and in-order traversal for the given tree. (2+2+2+2)



b. Following table gives the value of the function f(x, y, z). Find the corresponding function. Draw a simplified circuit diagram of the function. Also find the minterm normal form of f(x, y, z). (8)

| Х | у | Z | f(x, y, z) |
|---|---|---|------------|
| 0 | 0 | 0 | 0          |
| 0 | 0 | 1 | 1          |
| 0 | 1 | 0 | 1          |
| 0 | 1 | 1 | 1          |
| 1 | 0 | 0 | 0          |
| 1 | 0 | 1 | 1          |
| 1 | 1 | 0 | 0          |
| 1 | 1 | 1 | 0          |

- **Q.9** a. Explain Chomsky's hierarchy. Give suitable example in each case. (8)
  - b. Design a deterministic finite state automaton that accepts all strings over {0, 1} starting with 01 and contains 110. (8)

AC10 / DEC \_ 2010

AMIETE = CS (OI D SCHEME)

Λ