AMIETE - CS/IT (OLD SCHEME)

Code: AC06/AT06 **Time: 3 Hours**

Subject: DATA STRUCTURES & ALGORITHM DE

Max. Marks:

DECEMBER 2010

NOTE: There are 9 Questions in all.

- StudentBounty.com Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10) a. A queue is one in which addition and deletion can be done at both ends is

A)	Delque	(B)	Endqueue
C)	Dequeue	(D)	Hquêue

b. Extra memory of O(n) is needed in

(A)	Bubble sort	(B)	Merge sort
(C)	Insertion sort	(D)	Quick sort

c. Graphs are represented using

(A) Adjacency tree	(B) Adjacency graph
(C) Adjacency queue	(D) Adjacency linked list

d. How many distinct binary search trees can be formed which contain the integers 1,2,3

(A)	6	(B) 4
(C)	5	(D) 3

e. The number of comparisons required to sort 5 numbers in ascending order using bubble sort is

(A)	7	(B)	6
(C)	5	(D)	10

f. The spanning tree of connected graph with 10 vertices contains

(A)	9 edges	(B)	10 edges
(C)	11 edges	(D)	9 vertices

g. In _____, it is possible to traverse a tree without using stacks is

(A) Threaded binary tree		(B) B^+ tree
(C) Heap		(D) AVL tree
AC06/AT06 / DEC 2010	1	AMIETE - CS/IT (OLD SCHEME)

h.	The	prefix	form	of	infix	expression	A+B-C*D is

(A) + AB - *CD	(B)-+AB*CD
(C) $-+ABC*D$	(D) None of the above

StudentBounty.com i. The data structure required to execute breadth First Traversal on a graph is

(A)	Stack	(B)	Array
(C)	Queue	(D)	Tree

The number of different directed trees with 3 nodes are j.

(A) 2	(B) 4
(C) 3	(D) 5

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain how an array can be used to represent polynomials. Represent the polynomial $3x^3 + 2x^2 + 1$ in three different ways.	(6)
	b.	Write recursive method that prints odd numbers between 1 to n, for a positi integer n.	ve (4)
	c.	Explain algorithm analysis using frequency count. Define Big-O notation.	(6)
Q.3	a.	Write a code in C to delete an i th node from a linked list.	(6)
	b.	What do you understand by sparse matrix? How it is represented using a linklist? Write an algorithm to find its transpose?(1)	ed 10)
Q.4	a.	Define binary tree. Write a function to count the number of nodes in a bina tree.	ıry (8)
	b.	Write modules to perform the following operation on Binary tree (i) count number of leaf nodes (ii) find height of tree	(8)
Q.5	a.	Construct a tree for the expression $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$ State all the steps and write pre-order, in-order and post-order traversal of t above tree so formed.	he (8)
	b.	What do you understand by Height Balanced binary tree? Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initial empty Height Balanced Binary Sec.	rek

inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initial empty Height Balanced Binary Search Tree. (8)

AC06/AT06 / DEC. - 2010

2 AMIETE - CS/IT (OLD SCHEME)

www.StudentBounty.com Homework Help & Pastpapers

- a. Show and draw all B-trees of minimum degree 2 that represent the **Q.6** $\{1, 2, 3, 4, 5\}.$
- StudentBounty.com b. Write an algorithm for bubble sort. What is the asymptotic time complexity of bubble sort in worst case?
- **0.7** a. Construct the heap showing the insertion of each of the following elements in separate figures:-48, 34, 54, 26, 64, 54
 - b. What is hash function? Describe any two hash functions. Explain collision handling using linear and quadratic probing. (8)
- a. Write Dijkstra algorithm for finding the shortest path in a given graph? Give **Q.8** the analysis of algorithm. (8)

b. Consider the following undirected graph given below. Find

- (i) Its adjacency matrix.
- (ii) Its adjacency list representation.
- (iii) A depth-first spanning tree starting at node 1.
- (iv) A breadth-first spanning tree starting at node 1.

1 5 6 2 3 4

- 0.9 a. How stacks & queues can be represented using a linked list? Explain giving suitable examples. (10)
 - b. Define threaded binary tree. Explain inorder threading using a suitable example.

(6)

AMIETE - CS/IT (OLD SCHEME)

(8)

AC06/AT06 / DEC. - 2010

3