PHYSICS

Paper - 2
(PRACTICAL)
(Three hours)
 They must NOT start writing during this time)
$\therefore . \quad \therefore \because \therefore$ ERS MUST BE WRITTEN IN THE ANSWER BOOKLET PROVIDED SEPARATELY.
\because uarcd paper is used, it must be attached to the answer booklet.
UHerce zeen or a clear record of observations actually made, for their suitability and accuracy, and for the use made of them.
4.-. statement of the method may be given if necessary. The theory of the experiment is not required unless specifically asked for.
-mizis are advised to record their observations as soon as they have been made.
\therefore - ing rough work, should be done on the same sheet as, and adjacent to, the rest of the answer.
manemal tables and squared paper are provided. The intended marks for questions or parts of questions are given in brackets [].

Answer all questions.
You should not spend more than one and a half hours on Question 1.

Thma zaceriment determines the focal length of a convex lens by the displacement method.
Temermixe the approximate focal length f of the given convex lens (marked L) by projecting
terere of a distant object on a wall or a screen. Record the value of f in cm .

Figure 1(a)

Now arrange the object pin O, the image pin I and the lens on the optical bench table top as shown in figure 1(a) so that the tips of O and I lie on the principal axis the lens. Adjust the distance x between O and I to be nearly equal to $(4 f+10) \mathrm{cm}$ Ensure that this separation is maintained constant throughout this particular setting.

Move the lens towards the pin I and adjust its position until the diminished and inverted image of O coincides with the image pin I. Record the position L_{1} of the lens.

Figure 1(b)

Now move the lens towards the object pin O and adjust its position as shown in figure 1 until the magnified and inverted image of O coincides with 1 . Record the new position of the lens. The difference between the two positions L_{1} and L_{2} of the lens is tid displacement d of the lens. Determine d and record its value.
Repeat the experiment to obtain four more sets of x and d, taking values of x in the rang $(4 f+10) \mathrm{cm}$ and 100 cm .
 nmanm te 一主e of object pin and image pin is removed by moving the lens only．
$"$ manme $\because \because$ ：es of positions of the lens i．e． L_{1} and L_{2} and the corresponding $\therefore \therefore \dot{A}$ and $y=\frac{x^{2}-d^{2}}{40}$ ．
．．nmaza－：three significant figures．
1114 ：$\quad \therefore$ against x ．Draw the line of best fit and determine its

ancere olue of Q upto 1 decimal place where

$$
\mathrm{Q}=10 \mathrm{~S} .
$$

＂－wseースe：determines resistivity of the material of a wire．You are provided with 4 －\quad－
 m：：－－i on a wooden bobbin and provided with binding terminals，a jockey＇ J ＇， a：：：تn ier supply（E），a plug key＇K＇，a centre－zero galvanometer＇G＇and a few

－Re circuit as shown in Figure 2 below．Ensure that all connections are －

Figure 2
Tan $R=1 \Omega$ plug from the resistance box RB．By touching the jockey at various monre：－the wire $A B$ ，find the null point N for which the galvanometer shows no
 $m e=1 \Omega-10 \Omega$ ，each time finding and recording the value of l ．

Plot a graph of $\mathrm{y} v s \mathrm{R}$ and draw the line of best fit. Determine the slope S of the l . using $\mathrm{S}=\frac{\text { Change in } y}{\text { Change in } R}$.

Record the value of S upto three significant figures. From the graph, read and recor the value Y_{0} of Y when $R=0$.

Question 3

Find the least count of the given micro meter screw gauge. Using it, determine diameter ' d ' of the sample wire ' W '. Find and record the radius r of the wire in cm your answer paper. Using this value of r and the value of Y_{0} of Question 2, find th value of K where:

$$
\mathrm{K}=\pi r^{2} Y_{o} \times 10^{4}
$$

