| Please check the examination details be | low before ente | ering your candidate information | | | | |---|-----------------|----------------------------------|--|--|--| | Candidate surname | | Other names | | | | | Centre Number Candidate N Pearson Edexcel Inter | | al GCSE (9–1) | | | | | Time 1 hour 10 minutes | Paner | | | | | | Science (Single Award) | | | | | | | Chemistry | | | | | | | PAPER: 1C | | | | | | | You must have: | | Total Marks | | | | | Calculator, ruler | | J Total Marks | | | | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. - Calculators may be used. # Information - The total mark for this paper is 60. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Write your answers neatly and in good English. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ # The Periodic Table of the Elements | 0 4 He helium 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | t full y | |------------------------|---|------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|---| | 7 | 19
F
fluorine
9 | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | orted but not | | O | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ive been rep | | 5 | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112–116 ha
authenticated | | 4 | 12
C
carbon
6 | 28
Si
silicon
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207 Pb lead 82 | omic numbers | | ო | 11
B
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
T
thallium
81 | Elements with atomic numbers 112–116 have been reported but not fully authenticated | | · | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elem | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] Ds damstactium 110 | | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192 Ir inidium 77 | [268] | | T T hydrogen | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | mass
bol
number | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | [266] Sg seaborgium 106 | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | relati
atc
atomic | | 48
Ti
tttanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261] Rf rutherfordium 104 | | | | | 45
Sc
scandium
21 | 89 × yttrium 399 | 139
La *
lanthanum
57 | [227]
Ac*
actinium
89 | | 2 | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
bantum
56 | [226] Ra radium 88 | | - | 7
Li
Iithium
3 | 23
Na
sodium
11 | 39
K
potassium | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | | | | | 39 K potassium 0 | | | | ^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. ## **Answer ALL questions.** Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . - 1 Use the Periodic Table to help you answer this question. (a) (i) Name the element with atomic number 16. (1) (ii) Name the element in Group 3 and Period 2. (1) (iii) Name an element that is a liquid at room temperature. (1) (b) (i) Determine the number of neutrons in a chlorine atom with mass number 37. (1) - (ii) Give the formula of a sulfide ion. (1) - (iii) Give the formula of magnesium fluoride. (1) (Total for Question 1 = 6 marks) **2** A student uses paper chromatography to identify the dyes in five different inks, V, W, X, Y and Z. The chromatogram shows the results of the student's experiment. (a) (i) State why ink V did not move from the start line. (1) (ii) Explain which two inks contain a dye that is likely to be the most soluble in the solvent. (2) (b) Calculate the $R_{\rm f}$ value for the dye in ink W. (3) R_f value = (Total for Question 2 = 6 marks) | 3 | This question is about the elements in Group 1 of the Periodic Table. (a) State the name given to the elements in Group 1. | | |---|---|-------| | | (a) State the name given to the elements in Group 1. | (1) | | | (b) A scientist adds a small piece of potassium to a trough of water. | | | | (i) Which observation is not correct when potassium is added to water? | (1) | | | A a colourless solution forms | (1) | | | ■ B a lilac flame is seen | | | | C effervescence occurs | | | | D potassium sinks | | | | (ii) Give a reason why the scientist does not use a large piece of potassium. | (1) | | | | | | | (iii) After the reaction stops, the scientist adds a few drops of universal indicator solution to the trough. | | | | The universal indicator solution turns purple. | | | | Give the formula of the ion that causes the universal indicator solution to turn purple. | | | | tum purple. | (1) | | | (iv) Complete the chemical equation for the reaction of potassium with water. | (2) | | | H ₂ O → + | | | | | | | (c) Sodium reacts with oxygen to form the ionic compound sodium oxide, Na₂O | | | | | | |---|--|-------|--|--|--| | E | Explain, in terms of structure and bonding, why sodium oxide has a | | | | | | ł | high melting point. | (4) | /T-4-16 O | | | | | | | (Total for Question 3 = 10 ma | arks) | | | | | 4 | (a) An alkane has the molecular formula C_3H_8 (i) Give the name of this alkane. | (1) | |---|---|-----| | | (ii) Draw the displayed formula of this alkane. | (1) | | | (iii) Give the general formula for the alkanes. | (1) | | | (b) The alkanes C_2H_6 and C_4H_{10} contain covalent bonds and have simple molecular structures. | | | | (i) State what is meant by the term covalent bond . | (1) | | | (ii) Explain why C_4H_{10} has a higher boiling point than C_2H_6 | (3) | - (c) The organic compound tetrafluoroethene (C_2F_4) can be polymerised to form poly(tetrafluoroethene). - (i) Complete the equation for this polymerisation reaction. (2) (ii) Poly(tetrafluoroethene) is used as a coating on non-stick frying pans. The C—F covalent bonds in poly(tetrafluoroethene) are very strong. Suggest a reason why poly(tetrafluoroethene) is suitable as a coating on non-stick frying pans. (1) (Total for Question 4 = 10 marks) - **5** This question is about gases in the atmosphere. - (a) A student adds a piece of burning magnesium ribbon to a gas jar containing oxygen. - (i) State an observation that the student could make. (1) (ii) Write a chemical equation for the reaction of magnesium with oxygen. (1) (b) The student uses this apparatus to find the percentage by volume of oxygen in a sample of air. The student leaves the apparatus until there is no further decrease in the volume of gas in the syringe. These are the student's results. | volume of gas in conical flask and connecting tube | 275 cm ³ | |--|---------------------| | volume of gas in syringe at start | 100 cm ³ | | volume of gas in syringe at end | 28 cm³ | | (Total for Question 5 = 10 |) marks) | |--|----------| | | | | (ii) Explain why an increase in the percentage of carbon dioxide in the atmosphere may cause an environmental problem. | (2) | | (i) Describe a test for carbon dioxide. | (2) | | percentage of oxygen = | | | | | | | | | Give your answer to two significant figures. | (4) | **6** A student uses this apparatus to investigate the rate of the reaction between marble chips and dilute hydrochloric acid. (a) (i) Complete the equation for the reaction by adding the missing state symbols. (1) (ii) State why the mass of the contents of the flask decreases during the reaction. (1) (iii) State the purpose of the cotton wool. (1) (b) The graph shows the student's results. In the investigation the marble chips are in excess. (i) Explain the shape of the graph. (4) |
 |
 |
 | |------|------|------| |
 |
 |
 | (ii) On the grid, draw the curve the student would obtain if they used the same mass of smaller marble chips, keeping all other conditions the same. (2) (Total for Question 6 = 9 marks) **7** A student uses this apparatus to investigate the reaction between zinc and copper(II) sulfate solution. This is the student's method. - add 50.0 cm³ of copper(II) sulfate solution to the polystyrene cup - record the initial temperature - add excess zinc and stir - record the highest temperature of the mixture An exothermic reaction occurs. (a) State what is meant by the term **exothermic**. (1) (b) This is the equation for the reaction. $$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$ (i) What is the name of this type of reaction? (1) - A combustion - B decomposition - C displacement - D neutralisation | (ii) | Apart from the temperature increasing, give two other observations that the | |------|---| | | student could make during the reaction. | (2) |
 |
 | | |------|------|--| | | | | | | | | | | | | (iii) State why silver does not react with copper(II) sulfate solution. (1) (c) The table shows the student's results. | volume of copper(II) sulfate solution | 50.0 cm ³ | |--|----------------------| | initial temperature of copper(II) sulfate solution | 20.5°C | | highest temperature of mixture | 37.0°C | Calculate the heat energy change (Q) in kJ. [for the solution, $c = 4.2 \text{ J/g/}^{\circ}\text{C}$ mass of 1.00 cm^{3} of solution = 1.00 g] (4) (Total for Question 7 = 9 marks) **TOTAL FOR PAPER = 60 MARKS** # **BLANK PAGE**