IGCSE Double Award Science
 (Chemistry) 4437/5H
 Mark Scheme (Results)
 November 2008

IGCSE

IGCSE Double Award Science - Chemistry (4437/ 5H)

The following acronyms are used
owtte or words to that effect
ecf error carried forward
dop dependent on previous
nwn no working necessary

Question Number	Correct Answer	Notes	Mark
$\mathbf{1}$ (a) (i)	hydrogen peroxide \rightarrow water + oxygen		(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{1}$ (a) (ii)	catalyst		(1)

Question Number	Correct Answer	Notes
$\mathbf{1}$ (b)	over water / displacement of air with downward delivery / upward displacement of air. Could be shown on a diagram.	Accept "through water".

Question Number	Correct Answer	Notes	Mark
$\mathbf{1}$ (c)	relights a glowing splint	Reject "glows more brightly"	$\mathbf{(1)}$

Question Number	Correct Answer	Notes	Mark
$\mathbf{1}$ (d) (i)	Red (ignore pale/dark), crimson / scarlet	Reject references to orange / yellow /pink	(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{1}$ (d) (ii)	electron transfer	Covalent /	$\mathbf{1}$
	from lithium to oxygen	sharing scores	$\mathbf{1}$
	Li atoms each lose one electron and O atom gains	zero	$\mathbf{1}$
	two electrons		(3)

Question	Correct Answer	Notes	Mark
Number	Li		
$\mathbf{1}$ (d) (iii)	O^{2-}	Both correct but	$\mathbf{1}$
		reversed scores 1	$\mathbf{1}$

(Total 10 marks)

Question Number	Correct Answer	Notes	Mark
$\mathbf{2}$ (a)	Brown / red brown (reject "light", accept "dark") Grey (reject "light", accept "dark")/ black	Reject red alone or reference to orange Reject purple or violet	$\mathbf{1}$

Question Number	Correct Answer	Notes	Mark
$\mathbf{2 ~ (b) ~ (i) ~}$	diffusion		$(\mathbf{1)}$

Question Number	Correct Answer	Notes	Mark
2 (b) (ii)	$\mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})$ Reactants $=1$, products $=1$		

Question Number	Correct Answer	Notes	Mark
2 (b) (iii)	moving (faster)		$\mathbf{1}$
	further apart owtte		$\mathbf{1}$

Question Number	Correct Answer	Notes
$\mathbf{2 (c) (i)}$	bromine + hydrogen \rightarrow hydrogen bromide	Ignore "gas"

Question Number	Correct Answer	Notes	Mark
$\mathbf{2 ~ (c) ~ (i i) ~}$	hydrobromic (acid)		(1)

(Total 9 marks)

Question Number	Correct Answer	Notes	Mark
$\mathbf{3 ~ (a) ~ (i) ~}$	neutralisation	Accept "exothermic"	(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{3}$ (a) (ii)	$\mathrm{KOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$ Reactants $=1$, products $=1$	lorrect formulae with incorrect balancing $=1$ lgnore state symbols	(2)

Question Number	Correct Answer	Notes	Mark
$\mathbf{3 ~ (b) ~ (i) ~}$	burette		(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{3}$ (b) (ii)	pink / red (reject purple) colourless	Award 1 mark for correct colours in wrong order One colour on its own is zero	$\mathbf{1}$

Question Number	Correct Answer	Notes	Mark
$\mathbf{3}$ (c)	Same volumes without indicator Heat/ warm/ boil/ leave(in a warm) to evaporate water Cool (not given if not heated) filter off crystals dry between filter paper/ in (warm) oven (not leave to dry) if no attempt at M2, max 1 if heat to dryness in M2, max 2		$\mathbf{1}$
	OR OR	$\mathbf{1}$	
	Boil titration mixture with charcoal and filter Heat/ warm/ boil/ leave(in a warm) to evaporate water Cool (not given if not heated) filter off crystals dry between filter paper/ in (warm) oven (not leave to dry) if no attempt at M2, max 1 if heat to dryness in M2, max 2		

(Total 11 marks)

section B

Question Number	Correct Answer	Notes	Mark
$\mathbf{4}$ (a) (i)	number of electrons in outer shell is same as group OR number of shells with electrons in is same as period		

Question Number	Correct Answer	Notes	Mark
4 (a) (ii)	2.8 .8 .2	Accept any punctuation	(1)

Question Number	Correct Answer	Notes	Mark
4 (b)	ATOMS with (If atoms omitted, max 1) same atomic number/ same number of protons/ same element(1) different numbers of neutrons/ mass number (1)	Ignore same electrons	

Question	Correct Answer					Notes	Mark
4 (c) (i)	Number of neutrons	Number of protons	Atomic number of isotope	Mass number of isotope	Percentage isotope in the element		
	12 (1)	12(1)	12	24	79		
	13	12	12	25(1)	10(1)		
	14	12	12(1)	26	11		
	(5)						

Question Number	Correct Answer	Notes	Mark
5 (c) (ii)	cq on percentages in table. If use only two isotopes max 1. evidence of multiplication of mass numbers by percentages	If divide by 10 or 1000 rather than correct answer answer to 3 sig figs. $24.3=3$ $24.32=2$	First max 1 nonsense $=0$

Question Number	Correct Answer	Notes
$\mathbf{5}$ (a)	left hand electrode labelled (pure) copper right hand electrode labelled impure copper electrolyte labelled as any soluble copper salt	Accept cathode Accept anode
	(solution)	$\mathbf{1}$

Question Number	Correct Answer	Notes	Mark
$\mathbf{5}$ (b) (i)	solution has lower melting point/melting point of aluminium oxide is too high. allow lowers mp of aluminium oxide.		

Question Number	Correct Answer	Notes	Mark
5 (b) (ii)	Carbon (accept graphite)		(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{5}$ (c)	Copper: electrical wires / coins / water pipes /		$\mathbf{1}$
	allow pans /	$\mathbf{1}$	
	Associated property (conductor must be qualified). Aluminium: overhead cables/ specified transport/ pans / cooking foil / drink cans	Reject coins	$\mathbf{1}$
	Associated property (conductor must be qualified).		$\mathbf{1}$

Question Number	Correct Answer	Notes	Mark
5 (d)	either: electrolysis (1) more reactive than C/ can not be reduced by C/ similar reactivity to Al/ Al is extracted by electrolysis. (1) OR react with a NAMED more reactive metal (1) Ti less reactive than metal used/metal used more reactive than Ti/ metal will displace Ti. (1)		

(Total 11 marks)

Question Number	Correct Answer	Notes	Mark
$\mathbf{6}$ (a)	exothermic/ gives out (heat) energy		(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{6}$ (b)	$\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$ formulae (1) balancing (1)		

Question Number	Correct Answer	Notes	Mark
$\mathbf{6 (c)}$	• make chlorides into solutions/ add water • green ppt • brown ppt - correct linking of at least one observation to a cation		

(Total 7 marks)

Question Number	Correct Answer	Notes
$\mathbf{7}$ (a) (i)	contain oxygen/ contains an element other than C and H	

Question Number	Correct Answer	Notes	Mark
$\mathbf{7}$ (a) (ii)	$\mathrm{CH}_{3} / \mathrm{H}_{3} \mathrm{C}$		(1)

Question Number	Correct Answer	Notes	Mark
7 (a) (iii)	any TWO from - same general formula - members differ by CH_{2} - same/ similar chemical reactions / same functional group - gradation in physical properties	Accept trend in stated property	(2)

Question Number	Correct Answer	Notes	Mark
$\mathbf{7 (a)}$ (iv)	poly(propene)/ polypropene/ polypropylene		(1)

Question Number	Correct Answer	Notes
$\mathbf{7 (\mathbf { a }) (\mathbf { v })}$	1 correct repeat unit shown with continuation bonds (dependent on correct structure)	
$\mathbf{1}$		

Question	Correct Answer	Notes	Mark
Number	7 (a) (vi)	E has double bond/ unsaturated	
	polymer no double bond/ saturated		$\mathbf{1}$
			$\mathbf{1}$

Question Number	Correct Answer	Notes	Mark
$\mathbf{7 ~ (b) ~}$	three correct structures from: but-1-ene but-2-ene methylpropene cyclobutane methylcyclopropane	Penalise CH_{3} or CH_{2} once Penalise sticks once	

(Total 12 marks)

Question Number	Correct Answer	Notes
$\mathbf{8}$ (a) (i)	carbon monoxide toxic / posoinous / kills you correct reference to heamaglobin or statement that it prvents oxygen being carried round body	

Question Number	Correct Answer	Notes	Mark
$\mathbf{8}$ (a) (ii)	$=64$	Ignore units	(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{8 (b) ~ (i) ~}$	$\mathrm{Ca}(\mathrm{OH})_{2}$		(1)

Question Number	Correct Answer	Notes	Mark
$\mathbf{8}$ (b) (ii)	water/ $\mathrm{H}_{2} \mathrm{O}$		$\mathbf{1}$
	carbon dioxide/ CO_{2}		$\mathbf{1}$

(Total 7 marks)

Question Number	Correct Answer	Notes	Mark
$\mathbf{9 (a)}$	giant / macromolecular	Reject ionic	

Question Number	Correct Answer	Notes	Mark
$\mathbf{9 (b)}$	\bullet break covalent bonds (between atoms) \bullet covalent bonds strong \bullet need lots of energy to overcome/ break	If ionic / hydrogen bonds /vdw forces / velocalised electrons / molecules $=0$	(3)

Question Number	Correct Answer	Notes	Mark
$\mathbf{9 (c)}$	\bullet weak forces between Iayer \bullet slide/ slip		

Question Number	Correct Answer	Notes	Mark
$\mathbf{9 (d) (i)}$	• weak forces between molecules \bullet little energy to overcome - no (covalent) bonds broken / in diamond (covalent) bonds broken		

Question Number	Correct Answer	Notes	Mark
9 (d) (ii)	if yes: any two from - (molecules) round/ balls/ football shaped - weak forces between molecules - roll if no: - (strong) covalent bonds - hold atoms in place/ need lots of energy to break (dependent on M1)		(2)

(Total 11 marks)

