

4437/3F

London Examinations IGCSE
Science (Double Award) $\square \quad \square$

Physics

Paper 3F

Foundation Tier

Thursday 22 May 2008 - Morning
Time: 1 hour 15 minutes

Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper.
Answer ALL the questions in the spaces provided in this question paper.
Show all the steps in any calculations and state the units.
Calculators may be used.

Information for Candidates

The total mark for this paper is 75. The marks for parts of questions are shown in round brackets: e.g. (2).

Useful formulae are given on page 2.
This paper has 11 questions. Any blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English.

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

FORMULAE

You may find the following formulae useful.

power $=\frac{\text { work done }}{\text { time taken }}$	$P=\frac{W}{t}$
power $=\frac{\text { energy transferred }}{\text { time taken }}$	$P=\frac{W}{t}$
frequency $=\frac{1}{\text { time period }}$	$f=\frac{1}{T}$

Where necessary, assume the acceleration of free fall, $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

1. (a) A student walks from home to a library, waits to collect a book and then runs to a friend's house
The distance-time graph for the student is shown. Three sections of the graph are labelled \mathbf{P}, \mathbf{Q} and \mathbf{R}.

Complete the sentences with \mathbf{P}, \mathbf{Q} or \mathbf{R}.
(i) The student is walking at constant speed in section \qquad
(ii) The student is waiting at the library in section
(iii) The two sections of the graph that take equal amounts of time are and \qquad
(b) Use words from the box to complete the sentences.

You may use each word once, more than once or not at all.
curved horizontal sloping straight
(i) My answer to (a)(i) is because the section of the graph is
\qquad and
(2)
(ii) My answer to (a)(ii) is because the section of the graph is
\qquad
(c) How does the graph show that the student's friend lives nearer to the library than the student does?
\qquad
2. (a) The diagram shows the inside of a three-pin plug.

The cable is secured by the grip so that it cannot be pulled out of the plug.
Use words from the box to complete the sentences.

(i) Cables connected to plugs should not be too
(1)
(ii) They should also not be
(b) Describe the fault in the wiring of this plug.
\qquad
(1)

3. (a) Use words from the box to complete the sentence.
energy hertz information speed time

Waves may transfer \qquad and \qquad without transferring matter.
(b) The diagram shows a wave and five measurements $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E}.

4. (a) The diagram shows a loudspeaker.

A loudspeaker is a device which usefully transfers electrical energy to sound energy.

State the name of a device for each of the following useful energy transfers.
(i) Sound energy to electrical energy
(ii) Electrical energy to thermal (heat) energy
\qquad
(b) Give an example of the transfer of gravitational potential energy to kinetic energy.
(c) When a car moves, some of the chemical energy of the petrol is transferred to the kinetic energy of the car.

State one other form of energy that the chemical energy is transferred to.
(1)
(d) Use phrases from the box to complete the sentence.

total energy input	total energy output
useful energy input	useful energy output

For the car in (c), energy is conserved.
The statement 'energy is conserved' means that the
\qquad is equal to the
\qquad
(e) Electricity can be generated using wind power. Complete the boxes below to show the energy transfers involved.

6. (a) The box gives the colours in the visible spectrum in order. Add the names of the missing colours.
red orange blue indigo violet
(2)
(b) The box gives three adjacent parts of the electromagnetic spectrum.

A	Visible spectrum red \rightarrow violet	B

(i) State the names of part A
part B
(2)
(ii) Which part, \mathbf{A} or \mathbf{B}, has the higher frequency?
(1) Q6
(Total 5 marks)
7. (a) A child runs out in front of a car. The driver makes an emergency stop. The graph shows the speed of the car from the time when the driver sees the child on the road.

(i) State the driver's reaction time in seconds.

Time $=$
. s
(1)
(ii) State the time in seconds for the brakes to stop the car.

Time $=$
. S
(1)
(iii) Draw two more lines on the grid above to show how the speed might change if the driver has been drinking alcohol and the road is slippery.

Choose words from the box to complete the table.
You may use each word once, more than once or not at all.

decrease	increase		
Effect on \ldots It will ... the resistance of the same LDR the current in the LDR			
:---			

10. (a) The diagram shows how a student connects several components in a circuit. The student uses four identical 1.5 volt cells.

(i) Identify component \mathbf{Y}.
\qquad
(ii) The reading on ammeter \mathbf{Z} is 50 mA .

What is the reading in milliamps on each of the other two ammeters?
ammeter $\mathbf{W}=$ \qquad mA ammeter $\mathbf{X}=$ \qquad mA
(iii) The student expected the lamp to be brighter and the reading on the voltmeter to be 6.0 V .
The voltmeter is working correctly.
Give two reasons why the reading on the voltmeter is less than 6.0 V .
1 \qquad
\qquad

2 \qquad
\qquad

BLANK PAGE

BLANK PAGE

