

Paper 3
Science (Double Award) - 4437

Paper 8

Foundation and Higher Tiers

Wednesday 7 November 2007 - Morning
Time: 1 hour 15 minutes

Materials required for examination
 Ruler, pencil and calculator
 Items included with question papers Nil

Question Number	Leave Blank
1	
2	
3	
4	

Turn over

2. The following equation represents the thermal decomposition of a metal carbonate.

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

During the decomposition carbon dioxide gas is given off.
A student investigated the time taken for carbon dioxide to be given off when different metal carbonates were heated. The diagram shows the apparatus she used.

She timed how long it took for the limewater to start to turn cloudy.
The table shows her results.

Name of metal carbonate	Time for limewater to turn cloudy (s)
barium carbonate	118
calcium carbonate	50
magnesium carbonate	36
strontium carbonate	75

(a) State two variables the student should keep the same to make the investigation a fair test.

Variable 1 \qquad
Variable 2 \qquad

(e) Another student carried out a similar experiment but measured the volume of gas formed.
The diagram shows the apparatus he used.

He heated the solid metal carbonate and measured the volume of gas collected after 60 seconds and again after 90 seconds.
(i) Suggest one problem with the arrangement of the apparatus that made it difficult to measure the volume of the gas collected accurately.
\qquad
\qquad
(ii) Carbon dioxide gas is slightly soluble in water. What effect does this have on the volume of gas collected?
\qquad
\qquad
(iii) Give the name of another piece of apparatus that can be used to measure the volume of gas without using a trough of water.
(1)
(f) The diagrams show the levels in the measuring cylinder after 60 seconds and 90 seconds.
(i) Record the volume of gas in each measuring cylinder and calculate the volume of gas collected between 60 seconds and 90 seconds.

90 seconds

volume at 60 s \qquad volume at 90 s \qquad
volume collected between 60 s and 90 s \qquad
(ii) The rate at which gas is given off can be calculated using the equation

$$
\text { rate }=\frac{\text { volume of gas given off }}{\text { time taken }}
$$

Use your answer from part (f)(i) to calculate the rate at which gas is given off between 60 and 90 seconds. Give your answer to 2 significant figures.

Answer \qquad
(2)
(iii) Tick one box to show the correct units for the rate at which gas is given off.

3. Air contains about 20% oxygen. When a fuel burns in air it reacts with the oxygen.

A student investigates the length of time a candle burns when it is covered by an upturned beaker. The diagram shows the apparatus she uses.

She repeats the experiment using different sizes of beaker.
(a) Before she started the experiment the student sketched a graph to show how she thought the length of time the candle would burn would depend on the volume of air in the beaker.

(i) Describe the relationship shown in her sketch graph.
\qquad
\qquad
\qquad
(ii) Suggest why she thought the graph was this shape.
\qquad
\qquad
\qquad
\qquad

Turn over

BLANK PAGE
4. The ions present in ionic compounds can be identified using simple tests.

The first table shows the flame test colours for three cations.

Cation	Flame test colour
lithium	red
sodium	yellow-orange
strontium	red

The next table shows three tests that may be used to identify anions in solution.

Anion	Result of tests when		
	nitric acid is added		
	magnesium sulphate solution is added	universal indicator is added	
hydrogencarbonate	effervescence	no precipitate forms	dark green
hydrogensulphate	no effervescence	no precipitate forms	red
hydroxide	no effervescence	precipitate forms	blue
sulphate	no effervescence	no precipitate forms	green

Two ionic compounds, \mathbf{P} and \mathbf{Q}, are known to contain only anions and cations listed in the tables. They were analysed using some of the tests in the tables.
(a) Compound \mathbf{P} gave a yellow-orange flame test and produced effervescence when nitric acid was added.

Suggest two possible identities for compound \mathbf{P}.

1 \qquad

2 \qquad

