Edexcel IGCSE

Chemistry
 4335: 1F, 2H \& 03

November 2006

Mark Scheme

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information please call our Customer Services on 0870240 9800, or visit our website at www.edexcel.org.uk.

J anuary 2007
Publications Code UG 018556
All the material in this publication is copyright
© Edexcel Ltd 2006

IGCSE Chemistry (4335) - Foundation Tier

1. (a) water / moisture (1)
oxygen / air
(b) galvanising: bucket / car body
oiling: bicycle chain
painting: car body / bridge (1)
(1)
(c) zinc
2. (a) chromatography
filtration
fractional distillation
distillation
(b) boiling point/ freezing point
$100^{\circ} \mathrm{C} \quad / 0^{\circ} \mathrm{C}$
3. (a) nucleus
(b) electron
(c) electron
(d) (i) 18

23
19
17
(ii) $\quad W \& Z$
(iii) 2.8 .1
(e) 7
4. (a)

(i)	ticks next to: bitumen
gasoline	
(ii)	fractional kerosene
distillation	

(ii) fractional

(c) orange / brown to colourless
(d) (i) poly(ethene)
(ii) addition
(iii) e.g. bags, buckets (any suitable use)
5. (a) (i) cryolite
(ii) high melting point / conducts electricity (1)
(iii) oxygen \quad carbon dioxide / carbon monoxide
(b) (i) \rightarrow iron + carbon dioxide
(ii) loss of oxygen / gain of electrons
(c) ticks in first and second boxes
(d) aluminium
(e) iron: cars, railway tracks, any other suitable
aluminium: drink cans, aeroplanes, cooking foil, any other suitable
6. (a) first, third and last boxes ticked
(b) (i) green solid left / no fizzing
(ii) to remove copper(II) carbonate
(iii) copper(II) sulphate
(1)
water
NB (II) not essential
(c) (i) white
to blue
(1)
(ii) reversible
7. (a) (under)ground / mine / volcanoes NOT ores
crude oil
(b) air NOT oxygen
water
(c) (i) sulphur trioxide
(ii) range or specific temperature within $350^{\circ} \mathrm{C}-500^{\circ} \mathrm{C} /$ high temperature range or specific pressure within 1-5 atm / slightly increased (NOT high) pressure $\mathrm{V}_{2} \mathrm{O}_{5}$ / vanadium(V) oxide
8. (a) potassium manganate(VII) / manganese(IV) oxide
purple / black (grey)
(b) denser than air
(c) green / yellow-green
(d) (damp) litmus (paper) / starch iodide paper bleaches / white / black
$\begin{array}{lll}\text { (e) } & \text { (i) sodium chloride } \\ \text { (ii) } & \text { electrolysis } \\ \text { (iii) } & \text { bleach / treating } \mathbf{O R} \text { sterilising water / manufacture of } \mathrm{HCl}\end{array}$
9. (a) (i) only single bonds / no more atoms can be added
(ii) (they contain) carbon and hydrogen only
(b) (i) $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2}$
(ii) alkanes

(c) (compounds with) the same molecular formula
(1)
(but) different structures / structural formula
(1)
10. (a) Na^{+}
(b) 0^{2-}
(c) Cl^{-}
(d) Mg
(e) $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}$and O^{2-}
(f) $\begin{aligned} & \mathrm{MgO} \\ & \text { higher charges on the ions / ions have double charges }\end{aligned}$
11. (a) (i) enthalpy change / energy change / heat change
(ii) reaction is exothermic / heat is given out
(b) covalent
(c)

$$
H \quad \stackrel{\times}{\cdot}
$$

(d) forces between molecules (determine boiling point) (these are) weak
(e) colourless colourless
(f) (i) silver nitrate
(ii) white precipitate
(iii) AgNO_{3} (on left)

AgCl and HNO_{3} (on right)

IGCSE Chemistry (4335) - Higher Tier

1. (a) (under)ground / mine / volcanoes NOT ores crude oil
(b) air NOT oxygen
water
(c) (i) sulphur trioxide
(ii) range or specific temperature within $350^{\circ} \mathrm{C}-500^{\circ} \mathrm{C} /$
high temperature
range or specific pressure within 1-5 atm /
slightly increased (NOT high) pressure
$\mathrm{V}_{2} \mathrm{O}_{5}$ / vanadium (V) oxide
(2)

Total 7 marks
2. (a) potassium manganate(VII) / manganese(IV) oxide
purple / black (grey)
(b) denser than air
(c) green / yellow-green
(d) (damp) litmus (paper) / starch iodide paper bleaches / white / black
(e) (i) sodium chloride
(ii) electrolysis
(iii) bleach / treating OR sterilising water / manufacture of HCl

Total 9 marks

3. (a) (i) only single bonds / no more atoms can be added
(ii) (they contain) carbon and hydrogen only
(b) (i) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
(ii) alkanes
(iii) similar chemical properties gradation in physical properties neighbouring members differ by CH_{2} any two ,
(c) (compounds with) the same molecular formula
(but) different structures / structural formula
4. (a) Na^{+}
(b) 0^{2-}
(c) Cl^{-}
(d) Mg
(e) $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}$and O^{2-}
(f) MgO
higher charges on the ions / ions have double charges
5. (a) (i) enthalpy change / energy change / heat change
(ii) reaction is exothermic / heat is given out
(b) covalent
two / pair of
(1) shared electrons
(c) $\mathrm{H} \times \mathrm{H}$
(d) forces between molecules (determine boiling point) (these are) weak
(e) colourless
colourless
(f) (i) silver nitrate
(ii) white precipitate
(iii) AgNO_{3} (on left)

AgCl and HNO_{3} (on right)
6. (a) (i) solid
(ii) 25 to $100^{\circ} \mathrm{C}$
(b) (i) -1
(ii) each gain one electron (1)
to get full outer energy level / shell
(c) fluorine
(d) (i) $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$ reagents and products
(1)
balancing
(1)
(ii) solution becomes red / orange / brown / yellow
(e) $\mathrm{K}: \frac{16.4}{39}=0.421 ; \mathrm{Cl}: \frac{30.0}{35.5}=0.845 ; \mathrm{I}: \frac{53.6}{127}=0.422$
simplification of ratio / dividing all by 0.421 i.e. $\mathrm{K}=1 ; \mathrm{Cl}=2 ; \mathrm{I}=1$ correct formula: $\mathrm{KCl}_{2} \mathrm{I}$
7. (a) (i) needs lots of energy / container would melt
(ii) cryolite has a lower melting point OR mixture of aluminium oxide and cryolite (1) has lower melting point
(b) (i) $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$(or halved)
(ii) $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ species correct
(1) balanced
(c) $\mathrm{O}^{2-} /$ oxide
lost electrons
(d) carbon / graphite (electrode)
reacts with oxygen formed
(1)
makes carbon dioxide / carbon monoxide
(e) (i) regular lattice/ arrangement of positive ions NOT atoms
(ii) electrons mobile / free to move
8. (a) weak acids do not dissociate/ ionise fully $\left.\begin{array}{l}\text { weak acids have higher pH / turn U.I. orange-yellow } \\ \text { weak acids react more slowly }\end{array}\right\}$ any two weak acids react more slowly
ACCEPT reverse arguments for strong acids
(b) (i) 138
(1)
(ii) $2.76 \div 138=0.02$ (moles)
(1)
(iii) volume $=0.02 \div 0.2\left(=0.1 \mathrm{dm}^{3}\right)$
(1)
$=100\left(\mathrm{~cm}^{3}\right)$
(1)
(iv) 44
(1)
(v) $44 \times 0.02=0.88(\mathrm{~g})$
(1)
(vi) $0.02 \times 24=0.48\left(\mathrm{dm}^{3}\right)$
(1)
(c) (i) flame test / description of flame test lilac
(ii) add dilute hydrochloric acid
test gas with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ / (damp) blue litmus orange to green / goes red
NB If no test, can score last mark by stating SO_{2} produced OR
add barium chloride
(1)
followed by hydrochloric acid (1) white precipitate which dissolves on adding hydrochloric acid

Total 14 marks
9. (a) (refinery) gases
(b) global warming
(c) (i) high temperature / alumina catalyst
(ii) fractional distillation of crude oil produces more long chain fractions than required
(d) (i) $2640(\mathrm{~kJ} / \mathrm{mol})$
if incorrect, give 1 mark for 4×412 OR 2×496
(ii) $3338(\mathrm{~kJ} / \mathrm{mol})$
if incorrect give 1 mark for 2×743 OR 4×463
(iii) $-698(\mathrm{~kJ} / \mathrm{mol}) \mathbf{c q}$ on (i) and (ii)
(e) (i) $2 \mathrm{CH}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+4 \mathrm{H}_{2} \mathrm{O}$ (accept equation to produce C) all reagents and products correct $=1$ balancing =1
(ii) CO poisonous / toxic
reduces ability of blood to carry oxygen / correct reference to haemoglobin
10. (a) (i) natural gas / oil NOT methane
(ii) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{4} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$ correct species
balancing
ALLOW correct equation producing hydrogen from cracking
(iii) iron
(b) A: oxygen / O_{2}

B: water / $\mathrm{H}_{2} \mathrm{O}$
(c) (i) reference to the arrow
(ii) forward and reverse reactions take place
(1) same rate / concentrations do not change
(iii) more / increases
(iv) less / decreases
(d) (i) acid rain
(1)
(ii) kills trees
 (2)

Total 14 marks
11. (a) Each C bonded to 4 others (1)
arranged tetrahedrally(1)each C held rigidly in place/ strong bonds need to be broken to(1)deform structure
(b) Each C bonded to 3 others (1)
arranged in layers of hexagons(1)
weak forces between layers/ layers can slide over each other (1)
(c) strong (covalent) bonds (between atoms) (1)
need lots of energy to overcome/ break (1)

IGCSE Chemistry (4335) - Paper 3

1. (a) A burette

B pipette
(1)

C conical flask
(1)

D (filter) funnel
(1)
(b) (i) \mathbf{D}
(1)
(ii) \mathbf{A}
(1)

Total 6 marks

2. (a) they would dissolve (in the water)
(b) water rises up paper
colours separate / new colours appear / dyes move up paper
(c) (i) 3.5 cm
(ii) Q and R
(iii) use another liquid/ organic solvent / use longer paper
3. (a) amount/mass/ volume of organic liquid OR temp of water (in beaker)
(b) organic liquids are flammable/ would catch fire
(c) $67\left({ }^{\circ} \mathrm{C}\right)$

52 (s)
(d) (i) \mathbf{Z}
(ii) \mathbf{X} (ALLOW Z)
(iii) 50 (s)
(iv) \mathbf{Z}
(v) \mathbf{X}
(e) (i) (fractional) distillation
(ii) label line entering lower half of flask being heated
(1)
(iii) (water / Liebig) condenser
(1)
(iv) boiling point
(1)
4. (a) air expands on heating / contracts on cooling
(b) (i) $60\left(\mathrm{~cm}^{3}\right)$

(ii) 90 of air and 72 of gas
 18 of oxygen (ECF from air and gas volumes)

(1)
(c) points plotted correctly: 5 correct $=\mathbf{2 , 4}$ correct $=\mathbf{1}$
line of best fit
(d) second point circled
(e) (i) higher
(ii) (magnesium) combines with oxygen (in air)
(iii no graduation marks on jar / wider cross-section

Total 12 marks

5. (a) number of moles/ mass of MnO_{2}
(b) D
(c) (B)
$40 \quad 14$
(C) 50 25
(D) 50 20
(E) $\quad 70$

40
Award up to 2 marks for concentrations
Award up to 2 marks for rates
In each case: all four correct =2
three or two correct =1
(d) (i) points plotted correctly: 5 correct $=\mathbf{2}, 4$ correct $=\mathbf{1}$
(ii) rate is (directly) proportional to concentration
(e) repeat experiment(s) using:
$\left.\begin{array}{l}\text { same concentration/ volume of } \mathrm{H}_{2} \mathrm{O}_{2} \text { solution } \\ \text { same temperature } \\ \text { same amount of solids } \\ \text { same surface area of solids } \\ \text { measure time to collect fixed volume of } \mathrm{O}_{2} \text { gas }\end{array}\right\}$ any three

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UG 018556 J anuary 2007

For more information on Edexcel qualifications, please visit www.edexcel.org.uk/ qualifications Alternatively, you can contact Customer Services at www.edexcel. org.uk/ ask or on 08702409800

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WCIV 7BH
A PEARSON COMPANY
advancing learning, changing lives

