

Edexcel IGCSE

Chemistry 4335: 1F, 2H & 03

November 2006

advancing learning, changing lives

Mark Scheme

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information please call our Customer Services on 0870 240 9800, or visit our website at www.edexcel.org.uk.

January 2007 Publications Code UG 018556 All the material in this publication is copyright © Edexcel Ltd 2006

IGCSE Chemistry (4335) - Foundation Tier

1.	(a)	water / moisture oxygen / air	(1) (1)
	(b)	galvanising: bucket / car body oiling: bicycle chain painting: car body / bridge	(1) (1) (1)
	(c)	zinc	(1)
			Total 6 marks
2.	(a)	chromatography filtration fractional distillation distillation	(1) (1) (1) (1)
	(b)	boiling point / freezing point 100°C / 0°C	(1) (1)
			Total 6 marks
3.	(a)	nucleus	(1)
	(b)	electron	(1)
	(c)	electron	(1)
	(d)	 (i) 18 23 19 17 (ii) W & Z X & W or Z (iii) 2.8.1 	(1) (1) (1) (1) (1) (1) (1)
	(e)	7	(1)

Total 11 marks

4.	(a)	(i)	ticks next to: bitumen gasoline	(1) (1)
		(ii)	fractional distillation	(1) (1) (1)
	(b)	H \ C /	H = C \	(1)
		Н	Н	
	(c)	orano to co	ge / brown Iourless	(1) (1)
	(d)	(i) (ii)	poly(ethene) addition	(1) (1)
		(iii)	e.g. bags, buckets (any suitable use)	(1)
				Total 11 marks
5.	(a)	(i) (ii) (iii)	cryolite high melting point / conducts electricity oxygen	(1) (1) (1)
			carbon dioxide / carbon monoxide	(1)
	(b)	(i) (ii)	\rightarrow iron + carbon dioxide loss of oxygen / gain of electrons	(1) (1)
	(c)	ticks	in first and second boxes	(2)
	(d)	alum	inium	(1)
	(e)	iron: alum	cars, railway tracks, any other suitable inium: drink cans, aeroplanes, cooking foil, any other s	(1) suitable (1)
				Total 11 marks
6.	(a)	first,	third and last boxes ticked	(3)
	(b)	(i) (ii) (iii)	green solid left / no fizzing to remove copper(II) carbonate copper(II) sulphate water NB (II) not essential	(1) (1) (1) (1)
	(c)	(i) (ii)	white to blue reversible	(1) (1) (1)
		()		

Total 10 marks

7.	(a)	(under)ground / mine / volcanoes NOT ores crude oil	(1) (1)
	(b)	air NOT oxygen water	(1) (1)
	(c)	 (i) sulphur trioxide (ii) range or specific temperature within 350°C - 500°C / high temperature range or specific pressure within 1 - 5 atm / slightly increased (NOT high) pressure V₂O₅ / vanadium(V) oxide 	(1)
		Total 7 m	arks
8.	(a)	potassium manganate(VII) / manganese(IV) oxide purple / black (grey)	(1) (1)
	(b)	denser than air	(1)
	(c)	green / yellow-green	(1)
	(d)	(damp) litmus (paper) / starch iodide paper bleaches / white / black	(1) (1)
	(e)	 (i) sodium chloride (ii) electrolysis (iii) bleach / treating OR sterilising water / manufacture of HCI 	(1) (1) (1)
		Total 9 m	arks
9.	(a)	 (i) only single bonds / no more atoms can be added (ii) (they contain) carbon and hydrogen <u>only</u> 	(1) (1)
	(b)	 (i) C_nH_{2n+2} (ii) alkanes (iii) similar chemical properties gradation in physical properties neighbouring members differ by CH₂ 	(1) (1) (2)
	(c)	(compounds with) the same molecular formula (but) different structures / structural formula	(1) (1)
		Total 8 m	arks

(a)	Na⁺	(1)
(b)	0 ²⁻	(1)
(c)	CI	(1)
(d)	Mg	(1)
(e)	Mg^{2+} , Na^{+} and O^{2-}	(1)
(f)	MgO higher charges on the ions / ions have double charges	(1) (1)
		Total 7 marks
(a)	 (i) enthalpy change / energy change / heat change (ii) reaction is exothermic / heat is given out 	(1) (1)
(b)	covalent two / pair of shared electrons	(1) (1) (1)
(c)	H × H	(1)
(d)	forces between molecules (determine boiling point) (these are) weak	(1) (1)
(e)	colourless colourless	(1) (1)
(f)	 (i) silver nitrate (ii) white precipitate (iii) AgNO₃ (on left) AgCI and HNO₃ (on right) 	(1) (1) (1) (1)
	 (a) (b) (c) (d) (e) (b) (c) (d) (c) (d) (e) (f) 	(a) Na^+ (b) O^{2^-} (c) CI^- (d)Mg(e) Mg^{2^+} , Na^+ and O^{2^-} (f) MgO higher charges on the ions / ions have double charges(a)(i)(i)enthalpy change / energy change / heat change reaction is exothermic / heat is given out(b)covalent two / pair of shared electrons(c)H×H(d)forces between molecules (determine boiling point) (these are) weak(e)colourless colourless(f)(i)(i)silver nitrate (ii) AgNO ₃ (on left) AgCl and HNO ₃ (on right)

Total 14 marks

TOTAL FOR PAPER 100 MARKS

IGCSE Chemistry (4335) - Higher Tier

1.	(a)	(unde crude	er)ground / mine / volcanoes NOT ores e oil	(1) (1)
	(b)	air N water	OT oxygen	(1) (1)
	(c)	(i) (ii)	sulphur trioxide range or specific temperature within 350°C - 500°C / high temperature range or specific pressure within 1 - 5 atm / www	(1)
			V_2O_5 / vanadium(V) oxide	(2)
			Total 7 m	arks
2.	(a)	potas purple	sium manganate(VII) / manganese(IV) oxide e / black (grey)	(1) (1)
	(b)	dense	er than air	(1)
	(c)	green	/ yellow-green	(1)
	(d)	(damı bleac	o) litmus (paper) / starch iodide paper hes / white / black	(1) (1)
	(e)	(i) (ii) (iii)	sodium chloride electrolysis bleach / treating OR sterilising water / manufacture of HCI	(1) (1) (1)
			Total 9 m	arks
3.	(a)	(i) (ii)	only single bonds / no more atoms can be added (they contain) carbon and hydrogen <u>only</u>	(1) (1)
	(b)	(i) (ii) (iii)	C _n H _{2n+2} alkanes similar chemical properties gradation in physical properties	(1) (1)
			neighbouring members differ by CH_2	(2)
	(c)	(comp (but)	oounds with) the same molecular formula different structures / structural formula	(1) (1)

Total 8 marks

4.	(a)	Na^+		(1)		
	(b)	0 ²⁻		(1)		
	(c)	Cl		(1)		
	(d)	Mg		(1)		
	(e)	Mg^{2+} , Na^+ and O^{2-}				
	(f)	MgO higher	charges on the ions / ions have double charges	(1) (1)		
				Total 7 marks		
5.	(a)	(i) (ii)	enthalpy change / energy change / heat change reaction is exothermic / heat is given out	(1) (1)		
	(b)	covale two / shared	(1) (1) (1)			
	(c)	H ×	Н	(1)		
	(d)	forces (these	between molecules (determine boiling point) are) weak	(1) (1)		
	(e)	colour colour	less less	(1) (1)		
	(f)	(i) (ii) (iii)	silver nitrate white precipitate AgNO3 (on left) AgCI and HNO3 (on right)	(1) (1) (1) (1)		

Total 14 marks

(a)	(i) (ii)	solid 25 to 100 °C	(1) (1)
(b)	(i) (ii)	-1 each gain one electron to get full outer energy level / shell	(1) (1) (1)
(c)	fluor	ine	(1)
(d)	(i) (ii)	$CI_2 + 2KBr \rightarrow 2KCI + Br_2$ reagents and products balancing solution becomes red / orange / brown / yellow	(1) (1) (1)
(e)	K: <u>16.4</u>	$\frac{4}{2} = 0.421$; CI: $\frac{30.0}{375} = 0.845$; I: $\frac{53.6}{127} = 0.422$	(1)
	simpl corre	lification of ratio / dividing all by 0.421 i.e. K =1; Cl = 2; l = 1 ect formula: KCl_2l	(1) (1)
		Total 1	2 marks
(a)	(i) (ii)	needs lots of energy / container would melt cryolite has a lower melting point aluminium oxide dissolves in molten cryolite OR	(1) (1) (1)
		mixture of aluminium oxide and cryolite has lower melting point	(1) (1)
(b)	(i)	$2O^{2-} \rightarrow O_2 + 4e^-$ (or halved)	(1)
	(1)	species correct balanced	(1) (1)
(c)	O ²⁻ / oxide lost electrons		
(d)	carbon / graphite (electrode) reacts with oxygen formed makes carbon dioxide / carbon monoxide		(1) (1) (1)
(e)	(i) (ii)	regular lattice/arrangement of positive ions NOT atoms delocalised/sea of electrons electrons mobile / free to move	(1) (1) (1)
	()	Total 1	4 marks
	 (a) (b) (c) (d) (e) (b) (c) (c) (d) (e) 	(a) (i) (ii) (b) (i) (ii) (c) fluor (d) (i) (i) (e) $K: \frac{16.4}{39}$ simp correction (a) (i) (ii) (b) (i) (ii) (b) (i) (ii) (c) O^{2-} / lost expendence (d) carbor reaction (e) (i) (ii)	 (a) (i) solid (ii) 25 to 100 °C (b) (i) -1 (ii) each gain one electron to get full outer energy level / shell (c) fluorine (d) (i) Cl₂ + 2KBr → 2KCl + Br₂ reagents and products balancing (ii) solution becomes red / orange / brown / yellow (e) K: 164 <u>39</u> = 0.421; Cl: <u>300</u> <u>355</u> = 0.845; l: <u>536</u> = 0.422 simplification of ratio / dividing all by 0.421 i.e. K =1; Cl = 2; l = 1 correct formula: KCl₂I Total 1 (a) (i) needs lots of energy / container would melt (ii) cryolite has a lower melting point aluminium oxide dissolves in molten cryolite OR mixture of aluminium oxide and cryolite has lower melting point (b) (i) 2O² → O₂ + 4e' (or halved) (ii) Al³⁺ + 3e⁻ → Al species correct balanced (c) O²⁻ / oxide lost electrons (d) carbon / graphite (electrode) reacts with oxygen formed makes carbon dioxide / carbon monoxide (e) (i) regular lattice/arrangement of positive ions NOT atoms delocalised/sea of electrons (ii) electrons mobile / free to move

8.	(a)	weak weak weak ACCE	acids do not dissociate/ionise fully acids have higher pH / turn U.I. orange-yellow acids react more slowly acids reverse arguments for strong acids	(2)
	(b)	(i) (ii) (iii) (iv) (v) (vi)	138 2.76 \div 138 = 0.02 (moles) volume = 0.02 \div 0.2 (= 0.1dm ³) = 100 (cm ³) 44 44 x 0.02 = 0.88 (g) 0.02 x 24 = 0.48 (dm ³)	 (1) (1) (1) (1) (1) (1)
	(c)	(i) (ii)	flame test / description of flame test lilac add dilute hydrochloric acid test gas with acidified K ₂ Cr ₂ O ₇ / (damp) blue litmus orange to green / goes red NB If no test, can score last mark by stating SO ₂ produced OR add barium chloride followed by hydrochloric acid white precipitate which dissolves on adding hydrochloric acid	 (1) (1) (1) (1) (1) (1) (1) (1)
			Total 14 r	narks
9.	(a)	(refir	nery) gases	(1)
	(b)	globa	al warming	(1)
	(c)	(i) (ii)	high temperature / alumina catalyst fractional distillation of crude oil produces more long chain fractions than required	(1) (1)
	(d)	(i) (ii) (iii)	2640 (kJ/mol) if incorrect, give 1 mark for 4 x 412 OR 2 x 496 3338 (kJ/mol) if incorrect give 1 mark for 2 x 743 OR 4 x 463 - 698 (kJ/mol) cq on (i) and (ii)	(2) (2) (1)
	(e)	(i) (ii)	$2CH_4 + 3O_2 \rightarrow 2CO + 4H_2O$ (accept equation to produce C) all reagents and products correct = 1 balancing = 1 CO poisonous / toxic reduces ability of blood to carry oxygen / correct reference to haemoglobin	(1) (1) (1) (1)

Total 13 marks

10.	(a)	(i) (ii)	natural gas / oil NOT methane $H_{2}O + CH_{4} \rightarrow CO + 3H_{2}$	(1)
		(1)	correct species balancing	(1) (1)
		(iii)	ALLOW correct equation producing hydrogen from cracking iron	(1)
	(b)	A: oxy B: wat	gen / O ₂ er / H ₂ O	(1) (1)
	(c)	(i) (ii)	reference to the arrow forward and reverse reactions take place same rate / concentrations do not change	(1) (1) (1)
		(iii) (iv)	more / increases less / decreases	(1) (1)
	(d)	(i) (ii)	acid rain kills trees	(1)
		C	damages buildings	(2)
			Total 14	marks
11.	(a)	Each C arrang	bonded to 4 others ed tetrahedrally	(1) (1)
		each C defor	c held rigidly in place/strong bonds need to be broken to m structure	(1)
	(b)	Each C	bonded to 3 others	(1) (1)
		weak f	Forces between layers/layers can slide over each other	(1)

(c) strong (covalent) bonds (between atoms)(1)need lots of energy to overcome/break(1)

Total 8 marks

PAPER TOTAL 120 MARKS

IGCSE Chemistry (4335) - Paper 3

1.	(a)	A B C D	burette pipette conical flask (filter) funnel	(1) (1) (1) (1)
	(b)	(i) (ii)	D A	(1) (1)
				Total 6 marks
2.	(a)	they	would dissolve (in the water)	(1)

(a)	they would dissolve (in the water)	(1)
(b)	water rises up paper colours separate / new colours appear / dyes move up paper	(1) (1)
(c)	 (i) 3.5 cm (ii) Q and R (iii) use another liquid/organic solvent / use longer paper 	(1) (1) (1)

Total 6 marks

3.	(a)	amount/mass/volume of organic liquid OR temp of water (in beaker)	(1)	
	(b)	(b) organic liquids are flammable/would catch fire		
	(c)	67 (°C) 52 (s)	(1) (1)	
	(d)	(i) Z (ii) X (ALLOW Z) (iii) 50 (s) (iv) Z (v) X	(1) (1) (1) (1) (1)	
	(e)	 (i) (fractional) distillation (ii) label line entering lower half of flask being heated (iii) (water / Liebig) condenser (iv) boiling point 	(1) (1) (1) (1)	

Total 13 marks

4.	(a)	air expands on heating / contracts on cooling NOT just 'fair test'		(1)
	(b)	(i) (ii)	60 (cm ³) 45 (cm ³) 90 of air and 72 of gas 18 of oxygen (<i>ECF from air and gas volumes)</i>	(1) (1) (1) (1)
	(c)	points plotted correctly: 5 correct = 2, 4 correct = 1 line of best fit		
	(d)	second point circled (1)		
	(e)	(i) (ii) (iii	higher (magnesium) combines with oxygen (in air) no graduation marks on jar / wider cross-section	(1) (1) (1)
			Tota	al 12 marks
5.	(a)	number of moles/mass of MnO ₂ (1		
	(b)	D		(1)
	(c)	(B) (C) (D) (E) Aware	40 14 50 25 50 20 70 40 d up to 2 marks for concentrations	(2)
		Awaro In eao	d up to 2 marks for rates ch case: all four correct = 2 three or two correct = 1	(2)
	(d)	(i)	points plotted correctly: 5 correct = 2, 4 correct = 1	(2)
		(ii)	rate is (directly) proportional to concentration	(1)
	(e)	repeat experiment(s) using: same concentration/volume of H ₂ O ₂ solution same temperature same amount of solids same surface area of solids		
		mea	asure time to collect fixed volume of O_2 gas	(3)
			Tota	al 13 marks

TOTAL FOR PAPER 50 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UG 018556 January 2007

For more information on Edexcel qualifications, please visit <u>www.edexcel.org.uk/qualifications</u> Alternatively, you can contact Customer Services at <u>www.edexcel.org.uk/ask</u> or on 0870 240 9800

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

A PEARSON COMPANY