

$V = \frac{s}{t}$	v velocitys displacementt time
$a = \frac{v - u}{t}$	 a acceleration v final velocity u initial velocity t time taken
F = m × a	F force m mass a acceleration
$p = m \times v$	p momentumm massv velocity
$F = \frac{\Delta p}{t}$	F force Δp change in momentum t time
$W = m \times g$	 W weight m mass g gravitational field strength (acceleration of free fall)
<i>F</i> = k × e	F force k spring constant e extension
$W = F \times d$	 W work done F force d distance moved in the direction of the force
$P = \frac{W}{t}$	P power W work done t time
$E_p = m \times g \times h$	$E_{\rm p}$ change in gravitational potential energy m mass g gravitational field strength (acceleration of free fall) h change in height
$E_{\rm k} = \frac{1}{2} \times m \times v^2$	E _k kinetic energy m mass v speed

$T=\frac{1}{f}$	T time periodf frequency	
$M = F \times d$	 M moment of the force F force d perpendicular distance from the line of action of the force to the pivot 	
$P = \frac{F}{A}$	P pressureF forceA cross-sectional area	
$V = f \times \lambda$	v speedf frequencyλ wavelength	
$s = v \times t$	s distance v speed t time	
$n = \frac{\sin i}{\sin r}$	 n refractive index i angle of incidence r angle of refraction 	
$n = \frac{1}{\sin c}$	n refractive index c critical angle	
$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	 u object distance v image distance f focal length 	
$magnification = \frac{image \ height}{object \ height}$		
$P = \frac{1}{f}$	P power of a lens f focal length	
$E = m \times c \times \theta$	 E energy m mass c specific heat capacity θ temperature change 	
$E = m \times L_{\nu}$	E energy m mass L_{V} specific latent heat of vaporisation	
$E = m \times L_{F}$	E energy	
212 AOA and its licensers. All rights recoved		

Copyright © 2012 AQA and its licensors. All rights reserved.

	m mass $L_{\rm F}$ specific latent heat of fusion	
efficiency = $\frac{\text{useful energy out}}{\text{total energy in}}$ (x 100%)		
efficiency = $\frac{\text{useful power out}}{\text{total power in}}$ (×100%)		
$I = \frac{Q}{t}$	I currentQ charget time	
$V = \frac{E}{Q}$	V potential differenceE energy transferredQ charge	
$V = I \times R$	V potential difference I current R resistance	
$P = \frac{E}{t}$	P powerE energy transferredt time	
$P = I \times V$	P powerI currentV potential difference	
$E = V \times Q$	E energy transferredV potential differenceQ charge	
$E = P \times t$	 E energy transferred from the mains P power t time 	
$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	$V_{\rm p}$ potential difference across the primary coil $V_{\rm s}$ potential difference across the secondary coil $n_{\rm p}$ number of turns on the primary coil $n_{\rm s}$ number of turns on the secondary coil	
$V_p \times I_p = V_s \times I_s$	$V_{\rm p}$ potential difference across the primary coil $I_{\rm p}$ current in the primary coil $V_{\rm s}$ potential difference across the secondary coil $I_{\rm s}$ current in the secondary coil	