Specimen Paper

Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

AQA Level 1/2 Certificate in Science: Double Award Specimen Paper

For Examiner's Use				
Examiner's Initials				
Question	Mark			
1				
2				
3				
4				
5				
6				
TOTAL				

Double Award

Chemistry Paper 1F

For this paper you must have:

- a ruler
- the Periodic Table (enclosed).

You may use a calculator.

Time allowed

60 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Advice

• In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided.

1 (a) A chemistry teacher demonstrated the reaction between sodium and water to some students. One of the students wrote the following notes.

The reaction between sodium and water

A piece of sodium was cut easily into smaller pieces with a knife.

The sodium was added to water in a trough.

The sodium:

- floated
- melted quickly to give a silvery ball
- moved on the surface of the water
- fizzed.

Use the information in the box to help you to answer the questions.

How can you tell that:

1 (a) (i)	sodium has a low melting point
	(1 mark)
1 (a) (ii)	sodium is soft
	(1 mark)

1 (a) (iii)	a gas was produced	
1 (a) (iv)	sodium has a low density?	(1 mark)
1 (b)	Sodium reacts with chlorine to form sodium chloride. Write a word equation for this reaction.	(1 mark)
1 (c)	Use words from the box to answer the questions. compound element metal mixture	(1 mark)
1 (c) (i) 1 (c) (ii)	Which word best describes: chlorine	(1 mark) (1 mark)
	Question 1 continues on the next page	

1 (d)	When sodium reacts with chlorine the sodium atoms change into sodium ions.
	The diagrams below represent a sodium atom and a sodium ion.
	Sodium atom (Na) Sodium ion (Na+)
	Use the diagrams to help you to describe how a sodium atom turns into a sodium ion.
	(2 marks)

1 (e) (i) The diagram below represents a chlorine atom.

When chlorine reacts with sodium the chlorine forms negative chloride ions.

Complete the diagram below to show the outer electrons in a chloride ion (Cl⁻).

(1 mark)

	1	(e) (ii)	Chlori	de ions	are at	tracted	to so	dium	ions i	in soc	lium c	hlorid	е
--	---	----	--------	--------	---------	--------	---------	-------	------	--------	--------	--------	--------	---

Explain why.	
	 (1 mark)
	,

11

Turn over for the next question

2	Copper sulfate crystals can be made from copper oxide and an acid.
2 (a)	Complete the word equation for this reaction.
	acid + copper oxide —— copper sulfate +
2 (b)	A student followed the stages shown in the diagram to make a sample of copper sulfate.
	Stage 1 Acid
	Add copper oxide until in excess Stage 2 Heat
	Filter solution from Stage 2
	Stage 4 Heat the solution from Stage 3 until half of it has evaporated
	Allow the solution from Stage 4 to cool and evaporate slowly
2 (b) (i)	Why was the acid heated in Stages 1 and 2?
	(1 mark)

2	(b)	(ii)	How would the student know when the copper oxide was in excess in Stage 2	2?
				(1 mark)
2	(b)	(iii)	The apparatus below is used in Stage 3. Name A and B.	
			B A	
			A	
			В	
2	(b)	(iv)	Complete the sentence using a word from the box.	(2 marks)
			crystallisation distillation filtration	
			In Stage 5 the solid copper sulfate is formed by	
2	(b)	(v)	This method makes copper sulfate crystals that contain no acid and no coppe Explain how.	er oxide.

(1 mark)

3 Crude oil is a mixture of hydrocarbons. The diagram shows a method of separating crude oil.

3 (a)	Complete the sentence.	
	This method of separation is called	 (1 mark)
3 (b)	Most of the compounds in crude oil are saturated hydrocarbons.	
	Complete the sentences.	
	A <i>hydrocarbon</i> is a compound that contains	. and
	only.	
	A hydrocarbon is saturated if it contains only	bonds. (2 marks)
3 (c) (i)	Give the letter from the diagram that represents the least flammable fraction.	
		(1 mark)
3 (c) (ii)	Give the letter from the diagram that represents the most viscous fraction.	

3 (d) (i)	How does the temperature	e change between the botto	om and the top of the t	ower?
3 (d) (ii)	Complete the sentence be			(1 mark)
() ()	·	s in crude oil can be separ	rated by this method be	ecause they
	have different			(1 mark)
3 (e)	Many of the fractions of cr	rude oil are used as fuels.		
3 (e) (i)	·	l and diesel are burned, sul acid rain, global dimming a		into the air.
	Draw a straight line from 6	each environmental probler	m to the substance tha	t causes it.
	Environmental proble	em Subs	stance that causes pr	oblem
	Acid rain		Carbon particles	
	Climate change		Carbon dioxide	
	Global dimming		Sulfur dioxide	
			Water vapour	
				(3 marks)
	Questio	n 3 continues on the nex	t page	

3 (e) (ii)	Carbon particles are p	produced by the partial co	mbustion of a fuel.		
	Complete the sentence	ces using words from the b	OOX.		
	carbon dioxide	carbon monoxide	nitrogen	oxygen	
	Partial combustion is	caused by too little			
	A gas formed by the p	partial combustion of petro	l is	(2 mai	 rks)
		Turn over for the next q	uestion		

4	Calcium nitrate decomposes when it is	s heated.	
	2 Ca(NO ₃) ₂ (s) → 2	CaO(s) + 4 NO2(g) +	O ₂ (g)
4 (a)	A flame test was carried out on a sam be seen?	ple of the solid product.	What colour flame would
			(1 mark)
4 (b)	The solid product (CaO) reacts with w	ater to form a solution of	Ca(OH)₂
4 (b) (i)	Give the name of Ca(OH) ₂		
			(1 mark)
4 (b) (ii)	Complete the sentences.		
	When universal indicator is added to t	he solution formed it turr	ns
	This shows that Ca(OH) ₂ is		(2 marks)
4 (b) (iii)	Draw a ring around the most likely pH	value of the solution.	(2 9
	3 7	11	
			(1 mark)
4 (c)	When water is added to the solid prod	uct in a test tube the tub	e becomes very hot.
4 (c) (i)	This shows that the reaction is		(1 mark)
4 (c) (ii)	The tube becomes hot. Explain why.		·
			(2 marks)

4 (d)	Oxygen is given off when calcium nitrate decomposes. Describe a test for oxygen, and give the result if oxygen is present.										
	(1 mark)										
	Turn over for the next question										

- **5** Copper is a widely used material.
- **5 (a)** In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

One method of obtaining copper is by roasting copper(I) sulfide in air.

The copper produced by roasting copper(I) sulfide is impure. It can be purified by electrolysis, using the apparatus shown in the diagram.

Describe how copper can be purified using the apparatus shown.
(6 marks)

5 (b)	The diagram represents the structures of pure copper and of ar	n alloy, brass.	
	Pure copper Brass		
	Copper atoms — Copper	Zinc atom	
	Use the diagram to help you to explain why:		
5 (b) (i)	copper can be bent and shaped		
		(2 marks)	
5 (b) (ii)	brass is an alloy		
		(1 mark)	
5 (b) (iii)	brass is harder than pure copper.	(1 many	
· (5) ()	, 2.aas is naids alian pale support		
		(2 marks)	11
	Turn over for the most supplier		
	Turn over for the next question		

6 (a)	Ethanol is a liquid fuel which can be used as an alternative to petrol.
	Ethanol can be made by fermentation.

State **one** advantage and **one** disadvantage of using fermentation to produce ethanol as a fuel.

Advantage	 	 	
Disadvantage	 	 	
	 	 	(2 marks)

6 (b) A student did an experiment to find out the energy released when ethanol burns in air.

She used the apparatus shown in the diagram.

Her results are shown in the table.

Experiment	Mass of fuel used in g	Temperature change of water in °C	Energy used to heat water in kJ	Energy given out by 1.00g of fuel in kJ			
1	0.78	52	16.4	21.0			
2 0.64		43	13.5	21.1			
3 0.68		45	14.2				

		3	0.00	70	17.2		
6	(b) (i)	The energy give	n out when 1.00 g	of fuel burns can	be calculated usi	ng the equation:	1
		energy given out	t when 1.00 g of fu	uel burns = <u>ener</u>	gy used to heat w mass of fuel used		
		Calculate the am answer in the tal		ven out by 1.00 g	of fuel in Experim	ent 3 . Write your	ark)
6	(b) (ii)			dent have made of the water and the	•		
						(2 mar	 'ks)
6	(b) (iii)	Suggest one rea	ason why the stud	ent repeated the	experiment.		
						(1 ma	 ark)
6	(b) (iv)	The main error in	n this experiment	is energy loss.			
		Suggest one wa	y that the equipm	ent could be char	iged to reduce en	ergy loss.	
						(1 ma	ark)

END OF QUESTIONS

7

	0	4 H	helium 2	50	Ne	10	40	Ā	argon 18	84	궃	krypton 36	131	Xe	xenon 54	[222]	R	radon 86	peen	
	7			19	щ,	fluorine O	35.5	ច	chlorine 17	80	Ā	bromine 35	127	_	iodine 53	[210]	¥	astatine 85	16 have	ated
	9			16	0	oxygen o	32	တ	sulfur 16	79	Se	selenium 34	128	<u>e</u>	tellurium 52	[509]	Ъ	polonium 84	112 – 1	iuthentic
	2			14	z ,	nitrogen 7	31	<u> </u>	phosphorus 15	75	As	arsenic 33	122	Sp	antimony 51	209	洒	bismuth 83	umbers	ot fully a
	4			12	ပ -	carbon 6	28		silicon 14					Sn	50 50	207	P	lead 82	Elements with atomic numbers 112 – 116 have been	reported but not fully authenticated
	က			7	m	5 5	27		aluminium 13							204	F	thallium 81	nts with	report
												zinc 30			cadmium 48	201	Нg	mercury 80		
										63.5	ე ე	copper 29	108	Ag	silver 47	197	Αn	plog 79	[268] [271] [272] Mt Ds Rg	oentgenium 111
Table										29	Z	nickel 28	106	Pd	palladium 46	195	£	platinum 78	[271] Ds	larmstadtium 110
The Periodic Table										29	ပိ	cobalt 27	103	몺	rhodium 45		<u>-</u>	iridium 77	[268] Mt	109
The		← I	hydrogen 1							99	Pe	iron 26	101	Ru	ruthenium 44	190	SO	osmium 76		
				ı						22	Ē	manganese 25	[98]	ည	technetium 43	186	Re	rhenium 75	[264] Bh	bohrium 107
				mass	loqu	number				52	ပ်	chromium 24	96		molybdenum 42	184	>	tungsten 74	[266] [3 Sg	seaborgium 106
			Key	relative atomic mass	atomic symbol	name atomic (proton) number				51	>	vanadium 23	93		41	181	Б	tantalum 73	[262] Db	dubnium 105
				relativ	ato	atomic				48	j	titanium 22	91	Z	zirconium 40	178	Ξ	hafnium 72	[261] Rf	rutherfordium 104
							-			45	လွ	scandium 21	68		yttrium 39	139	Ľa*	lanthanum 57	[227] Ac *	actinium r
	7			6	Be .	beryllium 4	24	Mg	magnesium 12	40	င္မ	calcium 20	88	Š	strontium 38	137	Ва	barium 56	[226] Ra	radium 88
	-			7	5	m N	23	Na	sodium 11	39	ᆇ	potassium 19	85	8	rubidium 37	133	င္ပ	caesium 55	[223] Fr	francium 87

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Cu and CI have not been rounded to the nearest whole number.