## IGCSE

Physics

## Teacher's guide

## Edexcel IGCSE in Physics (4PHO)

First examination 2011

Edexcel, a Pearson company, is the UK's largest awarding body, offering academic and vocational qualifications and testing to more than 25,000 schools, colleges, employers and other places of learning in the UK and in over 100 countries worldwide. Qualifications include GCSE, IGCSE, AS and A Level, NVQ and our BTEC suite of vocational qualifications from entry level to BTEC Higher National Diplomas, recognised by employers and higher education institutions worldwide.

We deliver 9.4 million exam scripts each year, with more than $90 \%$ of exam papers marked onscreen annually. As part of Pearson, Edexcel continues to invest in cutting-edge technology that has revolutionised the examinations and assessment system. This includes the ability to provide detailed performance data to teachers and students which help to raise attainment.

## Acknowledgements

This guide has been produced by Edexcel on the basis of consultation with teachers, examiners, consultants and other interested parties. Edexcel would like to thank all those who contributed their time and expertise to its development.

References to third-party material made in this document are made in good faith. Edexcel does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

Authorised by Roger Beard
Prepared by Phil Myers
All the material in this publication is copyright
© Edexcel Limited 2008

## Introduction

The Edexcel International General Certificate of Secondary Education (IGCSE) in Physics is designed for schools and colleges. It is part of a suite of IGCSE qualifications offered by Edexcel.

## About this guide

This guide is for teachers who are delivering, or planning to deliver, the Edexcel IGCSE in Physics qualification. The guide supports you in delivering the course content and explains how to raise the achievement of your students. The guide:

- gives essential information on the changes between this qualification and existing Edexcel and other international qualifications in the subject
- provides details of Assessment Objectives (AO) and criteria
- includes a list of command words that are directly linked to the Assessment Objectives
- gives you an example course planner
- provides experimental and investigative work that should be incorporated into teaching
- offers you suggestions for a range of textbooks and other resources.


## Contents

Why choose this qualification? ..... 1
Support from Edexcel ..... 2
Section A: Qualification content ..... 3
Information for Edexcel centres ..... 3
Section B: Assessment ..... 9
Assessment overview ..... 9
Assessment Objectives and weightings ..... 9
Assessment summary ..... 10
Command words ..... 12
Using the mark scheme ..... 12
Section C: Planning and teaching ..... 13
Course planner ..... 13
Teaching ideas - experimental and investigative work ..... 20
Resources ..... 24
Appendices ..... 25
Appendix 1 - Physics formulae for relationships ..... 27
Appendix 2 - Electrical circuit symbols ..... 29

## Why choose this qualification?

The Edexcel IGCSE in Physics is designed for use in schools and colleges. It is part of a suite of the IGCSE suite of science qualifications offered by Edexcel. The course gives students the opportunity to experience physics within the context of their general education. The design of the course provides a basis for progression to further study in GCE Advanced Subsidiary and Advanced Level in Physics.

The relationship of assessment and the qualifications available is shown below.
Core content

| Biology Paper 1 |
| :---: |
| Untiered |
| 2 hours |

$+$

| Chemistry Paper 1 |
| :---: |
| Untiered |
| 2 hours |

$+$


Go to www.edexcel.com/igcse2009 for more information about this IGCSE and related resources.

## Support from Edexcel

We are dedicated to giving you exceptional customer service. Details of our main support services are given below. They will all help you to keep up to date with IGCSE 2009.

## Website

Our dedicated microsite www.edexcel.com/igcse2009 is where you will find the resources and information you need to successfully deliver IGCSE qualifications. To stay ahead of all the latest developments visit the microsite and sign up for our email alerts.

## Ask Edexcel

Ask Edexcel is our free, comprehensive online enquiry service. Use Ask Edexcel to get the answer to your queries about the administration of all Edexcel qualifications. To ask a question please go to www.edexcel.com/ask and fill out the online form.

## Ask the Expert

This free service puts teachers in direct contact with over 200 senior examiners, moderators and external verifiers who will respond to subject-specific queries about IGCSE 2009 and other Edexcel qualifications.

You can contact our experts via email or by completing our online form. Go to www.edexcel.com/asktheexpert for contact details.

## Regional offices

If you have any queries about the IGCSE 2009 qualifications, or if you are interested in offering other Edexcel qualifications your Regional Development Manager can help you. Go to www.edexcel.com/international for details of our regional offices.

## Head Office - London

If you have a question about IGCSE 2009 and are not sure who you need to ask, email us on IGCSE2009@edexcel.com or call our Customer Services Team on +44 (0) 1204770696.

## Training

A programme of professional development and training courses, covering various aspects of the specification and examination is available. Go to www.edexcel.com for details.

## Section A: Qualification content

## Information for Edexcel centres

The Edexcel IGCSE in Physics has been developed by drawing on the legacy IGCSE in Physics (4420) and making a minimum of changes. These changes are detailed below.

- New sections on astronomy (in Double Award and Physics) and momentum (Physics only).
- New content on diffraction of waves.
- Other minor revisions.
- Emboldened content is in IGCSE Physics only.
- Tiers have been removed.
- Investigative skills are embedded throughout.


## Changes to content from the legacy Edexcel IGCSE in Physics (4420) to this qualification

The table below sets out the relationship between the legacy IGCSE in Physics qualification (4420) to this qualification.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Unit/topic } & \text { New content } \\
\hline \begin{array}{l}\text { Forces and motion } \\
\text { Forces, movement and } \\
\text { shape }\end{array} & \begin{array}{l}\text { Students will be assessed on their ability to: } \\
1.18 \\
\text { recall and use the relationship between momentum, } \\
\text { mass and velocity } \\
\text { momentum = mass } \times \text { velocity }\end{array} \\
1.19 & \begin{array}{l}\text { use the ideas of momentum to explain safety features } \\
1.20 \\
\text { use the conservation of momentum to calculate the } \\
\text { mass, velocity or momentum of objects }\end{array} \\
1.21 & \begin{array}{l}\text { use the relationship between force, change in } \\
\text { momentum and time taken } \\
\text { force }=\text { change in momentum }\end{array}
$$ <br>

time taken\end{array}\right]\)| $1.22 \quad$understand Newton's third law <br> associate elastic behaviour with the ability of a material <br> to recover its original shape after the forces causing <br> deformation have been removed. |
| :--- |


| Unit/topic | New content |
| :---: | :---: |
| Forces and motion <br> Astronomy | Students will be assessed on their ability to: <br> 1.30 recall that the Moon orbits the Earth and that some other planets also have moons <br> 1.31 understand gravitational field strength, g , and recall that it is different on other planets and the Moon to that on the Earth <br> 1.32 explain that gravitational force <br> - causes the planets to orbit the Sun <br> - causes the Moon and artificial satellites to orbit the Earth <br> - causes comets to orbit the Sun <br> 1.33 use the relationship between orbital speed, orbital radius and time period <br> orbital speed $=\frac{2 \pi \times \text { orbital radius }}{\text { time period }}$ $v=\frac{2 \times \pi \times r}{T}$ <br> 1.34 describe how the orbit of a comet differs from that of a planet <br> 1.35 recall that the solar system is part of the Milky Way galaxy <br> - describe a galaxy as a large collection of billions of stars <br> - state that the universe is a large collection of billions of galaxies. |
| Electricity <br> Energy and potential difference in circuits | Students will be assessed on their ability to: <br> 2.14 know that lamps and LEDs can be used to indicate the presence of a current in a circuit. |
| Waves <br> Light and sound | Students will be assessed on their ability to: <br> 3.24 describe the advantages of using digital signals rather than analogue signals <br> 3.25 describe how digital signals can carry more information <br> 3.28 describe how to measure the speed of sound in air. <br> Note: this gives the opportunity to use methods other than a simple direct method. |

## Comparison of the content from the Cambridge International Examinations (CIE) IGCSE in Physics (0625) to this qualification

Adapting from teaching the Cambridge International Examinations (CIE) course is simplified as much of the content of the CIE and Edexcel specifications is common to both courses. Resources that are suitable for the CIE IGCSE will, therefore, also cover most of the Edexcel IGCSE. The additional content of the Edexcel course (particularly the quantitative work) will be covered by textbooks available at this level. Schools currently teaching the CIE IGCSE should be able to continue with the same schemes of work as long as they are modified to reflect the changes in content.

The table below shows how the content of the Cambridge International Examinations (CIE) IGCSE in Physics qualification (0625) maps onto the Edexcel IGCSE in Physics.

| Legacy CIE content (0625) | This qualification content reference | Comment |  |
| :---: | :---: | :---: | :---: |
|  |  | Content not in Edexcel | Additional content |
| Topic 1 <br> General Physics |  | N/A | 1.18-1.22 <br> Momentum <br> Newton's third law <br> 1.30-1.35 <br> Astronomy |
| Length and time | 1.2-1.7 | N/A | N/A |
| Speed, velocity and acceleration | $\begin{aligned} & 1.2-1.7, \\ & 1.16-1.17 \end{aligned}$ | N/A | N/A |
| Mass and weight | 1.15 | N/A | N/A |
| Density | 5.2-5.3 | N/A | N/A |
| Effect of forces | $\begin{aligned} & \text { 1.8-1.14, } \\ & \text { 1.27-1.29 } \end{aligned}$ | N/A | N/A |
| Conditions for equilibrium | 1.23-1.26 | N/A | N/A |
| Centre of mass | 1.24 | N/A | N/A |
| Scalars and vectors | 1.10 | N/A | N/A |
| Energy, work and power | 4.2-4.15 | N/A | N/A |
| Energy resources | $\begin{aligned} & \text { 4.16-4.17, } \\ & 7.17-7.20 \end{aligned}$ | N/A | N/A |
| Pressure | 5.4-5.6 | N/A | N/A |


| Legacy CIE content (0625) | This qualification content reference | Comment |  |
| :---: | :---: | :---: | :---: |
|  |  | Content not in Edexcel | Additional content |
| Topic 2 <br> Thermal Physics |  | N/A | 5.13-5.14, 5.18 <br> Absolute zero <br> Kelvin temperature <br> $\mathrm{p} / \mathrm{T}=$ constant |
| States of matter | 5.7-5.10 | N/A | N/A |
| Molecular model | 5.11-5.17 | N/A | N/A |
| Evaporation | 5.8 | N/A | N/A |
| Pressure changes | 5.19 | N/A | N/A |
| Thermal properties | 5.7-5.8 | N/A | N/A |
| Thermal energy transfer | 4.6-4.7 | N/A | N/A |
| Topic 3 |  | N/A | N/A |
| Properties of waves |  |  |  |
| General properties | 3.2-3.9, 3.14 | N/A | N/A |
| Reflection | 3.15-3.16 | N/A | N/A |
| Refraction | 3.17-3.22 | N/A | N/A |
| Lenses | N/A | Lenses | N/A |
| Dispersion | N/A | Dispersion | N/A |
| Electromagnetic spectrum | 3.10-3.13 | N/A | N/A |
| Sound | 3.26-3.32 | N/A | N/A |
| Topic 4 |  | N/A | N/A |
| Electricity and magnetism |  |  |  |
| Simple magnetism | 6.2-6.7 | N/A | N/A |
| Electrical quantities | $\begin{aligned} & 2.4-2.8, \\ & 2.15-2.17, \\ & 2.20-2.26 \end{aligned}$ | N/A | N/A |
| Electric circuits | $\begin{aligned} & 2.9-2.19, \\ & 3.23-3.25 \end{aligned}$ | N/A | N/A |
| Dangers | 2.2-2.3 | N/A | N/A |
| Electromagnetic effects | 6.8-6.20 | N/A | N/A |
| C.R.O. | Uses: 3.29-3.30 | N/A | N/A |


| Legacy CIE <br> content (0625) | This qualification content reference | Comment |  |
| :---: | :---: | :---: | :---: |
|  |  | Content not in Edexcel | Additional content |
| Topic 5 |  | N/A | N/A |
| Atomic Physics |  |  |  |
| Radioactivity | 7.4-7.12, 7.14 | N/A | N/A |
| The nuclear atom | $\begin{aligned} & \text { 7.2-7.3, 7.13, } \\ & 7.15-7.16 \end{aligned}$ | N/A | N/A |

## Section B: Assessment

This section describes the nature of assessment for this qualification including the logistics of examinations and what can be expected from the Edexcel examination papers.

## Assessment overview

The table below gives an overview of the assessment for this course.
We recommend that you make this information available to students to help ensure they are fully prepared and know exactly what to expect in each assessment.

| Paper 1 | Percentage | Marks | Time | Availability |
| :--- | :--- | :--- | :--- | :--- |
| Physics Paper 1 | $66 \frac{2}{3}$ | 120 | 2 hours | January and June <br> examination series <br> First assessment June 2011 |
| Paper 2 | Percentage | Marks | Time | Availability |
| Physics Paper 2 | $33 \frac{1}{3}$ | 60 | 1 hour | January and June <br> examination series <br> First assessment June 2011 |

## Assessment Objectives and weightings

|  | \% in IGCSE |
| :---: | :---: |
| AO1: Knowledge and understanding | 45-55\% |
| AO2: Application of knowledge and understanding, analysis and evaluation | 25-35\% |
| AO3: Investigative skills | 20\% |
| TOTAL | 100\% |


| Paper 1 | Description | Knowledge and skills |
| :---: | :---: | :---: |
| Physics <br> Paper 1 | - The time allowed for the examination is 2 hours. There are 120 marks available. <br> - The paper consists of one section. All questions are compulsory there is no choice of questions. All questions will be structured. <br> - As you progress through a question it will become more difficult. As you progress through the paper the questions will also generally increase in difficulty. progress through paper <br> This means that the end of one question will often be more difficult than the start of the next question. Do not stop working just because you get stuck on one question. <br> - This paper covers the full range of grades from G to A*. <br> - All parts of the specification content except those printed in bold are covered. <br> - Although all questions will be of the structured type, you can expect to find some questions requiring longer answers towards the end of the paper. <br> - You should take into the examination: <br> - a black pen <br> - a pencil (for graphs) <br> - a rule <br> - an eraser <br> - a calculator. | The Assessment Objectives covered in this assessment are: <br> AO1: 45-55\% <br> AO2: 25-35\% <br> AO3: 20\%. <br> For AO1 you will be required to recall and show understanding of facts, terminology, principles, concepts and practical techniques. You will need to draw on your knowledge to show an understanding of the applications and implications of science. You will need to make use of and present information logically and using appropriate vocabulary. No more than 50 per cent of the AO 1 marks will be for direct recall. <br> For AO 2 you will be required to explain phenomena and interpret data based on you knowledge of science. This may involve unfamiliar contexts and you should be able to use your knowledge and apply it to work out the answer. You will be required to carry out calculations; in calculations it is important that you show clearly all the steps of your working. <br> For AO 3 you will not be expected to need factual recall of physics. You will need to show that you are familiar with laboratory apparatus and its use, including the reading of scales. You may be asked to plan experimental procedures; to record results in table and/or to plot them on a graph and draw straight lines or curves of best fit. You will need to be able to offer explanations for results and to be able to spot anomalous results and suggest explanations for them. You are expected to be able to evaluate data obtained from experiments and experimental methods and to suggest improvements. <br> To obtain a high mark you will need to be able to recall the factual content of the specification and apply those facts to novel situations. You will also need to be familiar with laboratory work and the way in which science is conducted in a practical situation. |


| Paper 2 | Description | Knowledge and skills |
| :---: | :---: | :---: |
| Physics paper 2 | - The time allowed for the examination is 1 hour. There are 60 marks available. <br> - The paper consists of one section. All questions are compulsory there is no choice of questions. All questions will be structured. <br> - As you progress through a question it will become more difficult. As you progress through the paper the questions will also generally increase in difficulty. <br> progress through paper <br> This means that the end of one question will often be more difficult than the start of the next question. Do not stop working just because you get stuck on one question. <br> - This paper targets grades from E to A*. <br> - All parts of the specification (those in bold and those not in bold) are covered. <br> - Although all questions will be of the structured type, you can expect to find some questions requiring longer answers towards the end of the paper. <br> - You should take into the examination: <br> - a black pen <br> - a pencil (for graphs) <br> - a rule <br> - an eraser <br> - a calculator. | All three Assessment Objectives are covered. The breakdown of marks available is: <br> AO1: 45\%-55\% (27 to 33 marks) <br> AO2: $25 \%-35 \%$ ( 15 to 21 marks) AO3: 20\% (12 marks). <br> For AO 1 you will be required to recall and show understanding of facts, terminology, principles, concepts and practical techniques. You will need to draw on your knowledge to show an understanding of the applications and implications of physics. You will need to make use of and present information logically and using appropriate vocabulary. No more than 50 per cent of the AO1 marks will be for direct recall. <br> For AO 2 you will be required to explain phenomena and interpret data based on you knowledge of physics. This may involve unfamiliar contexts and you should be able to use your knowledge and apply it to work out the answer. You will be required to carry out calculations; in calculations it is important that you show clearly all the steps of your working. <br> For AO 3 you will not be expected to need factual recall of physics. You will need to show that you are familiar with laboratory apparatus and its use, including the reading of scales. You may be asked to plan experimental procedures, to record results in table and/or to plot them on a graph and draw straight lines or curves of best fit. You will need to be able to offer explanations for results and to be able to spot anomalous results and suggest explanations for them. You are expected to be able to evaluate data obtained from experiments and experimental methods and to suggest improvements. <br> To obtain a high mark you will need to be able to recall the factual content of the specification and apply those facts to novel situations. You will also need to be familiar with laboratory work and the way in which science is conducted in a practical situation. |

## Command words

Terms used within the papers include the following.

- Calculate - students may be asked to perform calculations.
- Compare - students should offer similarities and differences between the items being compared. This should not be answered by writing two paragraphs that deal separately with the two items.
- Describe - students should offer a response that includes the fundamental facts about the item or process for which the description is requested.
- Design - students may be asked to design an experiment.
- Explain - students should offer a response that utilises the underlying principles and concepts involved.
- Name - students should offer the name of the object or process in question. They should not describe or explain it.
- Plot/draw/complete/measure - students may be asked questions requiring them to plot data, draw diagrams, complete tables or measure drawn apparatus.
- State/identify - students should offer a concise response with no explanation unless this is also requested.
- Suggest - students will be expected to offer a logical response, not based on recall of knowledge, but on applying the principles and concepts gained during the course. This may be related to new situations or may relate to familiar situations in which there is no single correct response.


## Using the mark scheme

The mark scheme gives the responses we expect from students. Indicative answers are given but during the standardisation of examiners process the mark scheme is updated and expanded to cover unexpected, correct student responses.

## Section C: Planning and teaching

## Course planner

This planning sheet is offered as a rough guide for a course that might cover 50 teaching weeks spread over five terms.

## Term planner

| Edexcel IGCSE Physics (4PH0): Planning Sheet |  |  |
| :---: | :---: | :---: |
| Term | Area of content | Content with specification references |
| Year 1 <br> Term 1 <br> 10 weeks | Movement and position | Distance, speed and acceleration (1.2-1.7) |
|  | Forces, movement and shape | Forces, vectors, momentum, moments, Hooke's Law (1.8-1.29) |
|  | Astronomy | Orbits, planets, comets, solar system, galaxies (1.30-1.35) |
| Year 1 <br> Term 2 <br> 10 weeks | Mains electricity | Earthing, fuses, energy and power, energy transferred, d.c and a.c. (2.2-2.8) |
|  | Energy and potential difference in circuits | Series and parallel circuits, LDRs, thermistors, LEDs, Ohm's Law, charge, conductors, voltage and the volt (2.9-2.19) |
|  | Electric charge | Insulators, conductors, attraction and repulsion between charges, electrons (2.20-2.26) |
|  | Properties of waves | Transverse, longitudinal, amplitude, frequency, wavelength, wave speed, sound, electromagnetic waves (3.2-3.7) |
| Year 1 <br> Term 3 <br> 10 weeks | Properties of waves | Diffraction (3.8, 3.9) |
|  | The electromagnetic spectrum | Uses and detrimental effects (3.10-3.13) |
|  | Light and sound | Reflection, refraction, diffraction, total internal reflection, critical angle, refractive index, speed of sound, oscilloscope (3.13-3.32) |
|  | Energy transfer | Efficiency, conduction, convection, radiation (4.2-4.8) |


| Term | Area of content | Content with specification references |
| :---: | :---: | :---: |
| Year 2 <br> Term 1 <br> 10 weeks | Work | Force, distance, potential and kinetic energy $(4.9-4.12)$ |
|  | Power | Power, work done and time (4.13, 4.14) |
|  | Energy resources and electricity generation | Advantages and disadvantages of using renewable and non-renewable resources $(4.15,4.16)$ |
|  | Density and pressure | Density, mass, volume, pressure, force, area (5.2-5.6) |
|  | Change of state | Movement and arrangement of molecules in solids, liquids and gases (5.7-5.10) |
|  | Ideal gas molecules | Brownian motion, absolute zero, Kelvin scale, gas laws (5.11-5.19) |
|  | Magnetism | Attraction, repulsion, field lines and patterns, hard and soft materials (6.2-6.7) |
| Year 2 <br> Term 2 <br> 10 weeks | Electromagnetism | Electromagnets, field patterns for wires, coils and solenoids, left-hand rule (6.8-6.14) |
|  | Electromagnetic induction | Induced voltage, transformers (6.15-6.20) |
|  | Radioactivity | Atoms, protons, neutrons, electrons, isotopes, alpha, beta, gamma radiation, nuclear equations, background radiation, half life (7.2-7.14) |
|  | Particles | Alpha scattering, fission, nuclear reactors (7.15-7.20) |

## Weekly planner

The specification content has been further broken down into work that could be covered in a week, together with suggested resources so that students are familiar with the practical components of the assessment.

| Week | Specification reference | Content | Resources |
| :--- | :--- | :--- | :--- |
| 1 | $1.2,1.3$ | Speed, distance, time | Ticker tape timer |
| 2 | $1.4,1.5,1.6,1.7$ | Acceleration, velocity, <br> time | Ticker tape timer |
| 3 | $1.8,1.9,1.10,1.11,1.12$ | Types of force, vectors | Spring balance |
| 4 | $1.13,1.14$ | Friction, $F=m \times a$ | Ticker tape timer, <br> trolley, runway |
| 5 | $1.15,1.16,1.17$ | Weight, stopping <br> distance, terminal velocity | Ball bearing, <br> measuring cylinder <br> with oil |
| 6 | $1.18,1.19,1.20$ | Momentum, safety | Linear air track |
| 7 | $1.21,1.22$ | Force and momentum, <br> Third Law |  |
| 8 | $1.23,1.24,1.25,1.26$ | Moment of a force, centre <br> of gravity, principle of <br> moments, upward forces <br> on loaded light beams | Metre rule, small <br> known masses, pivot. <br> Irregularly shaped <br> lamina, plumb line |
| 9 | $1.27,1.28,1.29$ | F-e graphs for springs, <br> wires and rubber bands, <br> Hooke's Law, elastic <br> behaviour | Spring, rubber band, <br> metre rule, masses |
| 10 | $1.30,1.31,1.32,1.33$, | Astronomy |  |
| $1.34,1.35$ |  |  |  |


| Week | Specification reference | Content | Resources |
| :---: | :---: | :---: | :---: |
| 14 | 2.9, 2.10, 2.11, 2.12 | Series and parallel circuits, V-I graphs for wires, filament lamps, diodes | Dry cell, lamp, ammeter, voltmeter, switch, resistor, wire, filament lamp, diode |
| 15 | 2.13, 2.14, 2.15 | LDRs, thermistors, LEDs, Ohm's Law | LDR, thermistor, LED, ammeter, voltmeter, dry cell, low voltage power supply, rheostat |
| 16 | 2.16, 2.17, 2.18, 2.19 | Current as flow of charge, $Q=I \times t$, electrons, definition of the volt | Polythene and cellulose acetate rods |
| 17 | 2.20, 2.21, 2.22, 2.23 | Conductors and insulators, charging by friction, attraction and repulsion between charges | Polythene and cellulose acetate rod, gold leaf electroscope, Van de Graaf generator |
| 18 | 2.24, 2.25, 2.26 | Movement of electrons, uses and dangers of electrostatic charges |  |
| 19 | 3.2, 3.3, 3.4 | Longitudinal and transverse waves Amplitude, frequency, wavelength, period, energy transfer of waves | Ripple tank, slinky spring, rope |
| 20 | 3.5, 3.6, 3.7 | Speed, frequency and wavelength; frequency and periodic time | Ripple tank |
| 21 | 3.8, 3.9 | Dependence of wavelength and gap size on diffraction of waves. Edge effect | Ripple tank |
| 22 | 3.10, 3.11, 3.12, 3.13 | Properties, uses and dangers of different parts of the electromagnetic spectrum | Microwave generator and detector |
| 23 | 3.14, 3.15 | Reflection of light <br> Ray diagrams for images formed in plane mirrors | Plane mirror, raybox, protractor |
| 24 | 3.17, 3.18, 3.19, | Refraction of light, refractive index | Raybox, glass block, protractor |
| 25 | 3.20, 3.21, 3.22 | Total internal reflection, critical angle | Semicircular glass block, raybox |


| Week | Specification reference | Content | Resources |
| :--- | :--- | :--- | :--- |
| 26 | $3.23,3.24,3.25,3.26$, <br> 3.27 | Analogue and digital <br> signals, reflection, <br> refraction and diffraction <br> of sound waves, human <br> frequency range | Signal generator, <br> loudspeaker |
| 27 | 3.28 | Measurement of the speed <br> of sound | Stopwatch; resonant <br> tube; tuning forks |
| 28 | $3.29,3.30,3.31,3.32$ | Determination of the <br> frequency of a sound <br> wave, dependence of <br> pitch on frequency and <br> loudness on amplitude <br> using an oscilloscope | Signal generator, <br> loudspeaker, <br> oscilloscope |
| 29 | $4.2,4.3,4.4,4.5$ | Energy transfer and <br> efficiency | Electric motor, <br> generator, pulley, <br> weight |
| 30 | $4.6,4.7,4.8$ | Energy transfer by <br> conduction, convection <br> and radiation | Bunsen burner, metal <br> rods, paraffin wax, <br> potassium <br> permanganate, <br> electric heater, shiny <br> surface, dull black <br> surface |
| 31 | $4.9,4.10,4.11,4.12,4.13$ | Work done, force and <br> distance, kinetic energy, <br> gravitational potential <br> energy | Ticker tape timer, <br> runway, pulley, <br> thread, weight |
| 33 | $6.16,4.16,4.17$ | Power, work done and <br> time | Measure personal <br> power using <br> stopwatch, metre <br> rule, bathroom scales <br> and flight of stairs |
| 32 | $4.14,4.15$ | Demonstration of <br> generation of electricity <br> by rotation of a magnet <br> within a coil of wire. <br> Electricity generation <br> from renewable and non- <br> renewable resources. <br> Advantages and <br> disadvantages | Dynamo, lamp |
|  |  |  |  |


| Week | Specification reference | Content | Resources |
| :---: | :---: | :---: | :---: |
| 34 | 5.2, 5.3 | Density, mass and volume | Regularly and irregularly-shaped solids, measuring cylinder, balance, rule |
| 35 | 5.4, 5.5, 5.6 | Pressure, force and area. Solid and liquid pressure | Regular solid, rule, balance, U-tube manometer |
| 36 | 5.7, 5.8, 5.9, 5.10 | Change of state during melting, and evaporation and boiling. Movement and arrangement of molecules in solid and liquid states | Test tube, ethanamide, beaker, water, thermometer |
| 37 | 5.11, 5.12, 5.13, 5.14 | Brownian motion, molecular pressure, absolute zero, Kelvin scale | Microscope, glass cell, lamp, glass rod |
| 38 | 5.15, 5.16, 5.17 5.18, 5.19 | Understand and use the relationships for Boyle's Law and Pressure Law | Pressure Law apparatus, Boyle's Law apparatus |
| 39 | 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 | Magnetic poles, materials, field lines and patterns | Bar magnets, plotting compass, iron filings |
| 40 | 6.8, 6.9, 6.10 | Magnetic field due electric current in wire, coil and solenoid; electromagnet | Plotting compasses. Wire, coil and solenoid each with current passing through. Low voltage supply, ammeter, electromagnet, paperclips |
| 41 | 6.11, 6.12, 6.13, 6.14 | Force on a charged particle or conductor in a magnetic field. Direction and size of resulting force | Model motor |
| 42 | 6.15, 6.16 | Factors affecting the size of an induced voltage when a conductor moves in a magnetic field | Sensitive centre-zero meter, bar magnet, solenoid |
| 43 | 6.17, 6.18, 6.19, 6.20 | Transformers. Step-up and step-down, turns ratio, efficiency | C-cores, wire, a.c. supply, lamp |


| Week | Specification reference | Content | Resources |
| :--- | :--- | :--- | :--- |
| 44 | $7.2,7.3$ | Protons, neutron, <br> electrons, isotopes |  |
| 45 | $7.8,7.9$ | Detection of ionising <br> radiation, background <br> radiation | Radioactive sources, <br> Geiger-Muller tube |
| 46 | $7.4,7.5,7.6,7.7$ | Radioactivity. Nature and <br> penetrating power of <br> alpha, beta and gamma <br> radiation. Effect of decay <br> on atomic and mass <br> number <br> Balanced nuclear <br> equations | Radioactive sources, <br> Geiger-Muller tube, <br> lead sheet, thin <br> aluminium sheet, <br> paper |
| 47 | $7.10,7.11,7.12$ | Half life | Simulation using <br> dice |
| 48 | $7.13,7.14$ | Uses and dangers of <br> ionising radiations |  |
| 49 | $7.15,7.16$ | Alpha particle scattering |  |
| 50 | $7.17,7.18,7.19,7.20$ | Nuclear fission <br> Nuclear reactors |  |

## Teaching ideas - experimental and investigative work

Experimental work is an integral part of the study of physics so it is appropriate that assessment of experimental and investigative skills should form approximately 20 per cent of the final assessment.
It is strongly recommended that 20 per cent of the teaching time should be devoted to practical work carried out by the students themselves. However, there may be circumstances where it is possible for the work to be carried out only in small groups or even by demonstration alone. Between 24 and 30 of the 120 marks in Paper 1 will be set as questions with a practical bias, along with approximately 12 of the 60 marks in Paper 2.
Many of the topics in the specification should be taught in a way that allows the facts to arise from practical work, rather than the practical work being used to demonstrate what students have already been taught.
Students are expected to acquire skills that allow them to be assessed on their ability to:

- plan experimental procedures
- describe practical techniques and take measurements
- analyse evidence and draw conclusions, communicating findings using calculations, tables and graphs
- evaluate evidence.

The sample assessment materials, which include mark schemes illustrate the range of skills that will be tested. Question 3(c) on Paper 2 asks students to describe an investigation with which they would not be familiar, although it is introduced in the question.

## Training students in practical skills

Students should be offered as many opportunities as possible to plan and carry out experimental tasks and whole investigations themselves, and to practise the skills needed to achieve their highest potential in this work.
Many students will need considerable guidance in order to progress from simply carrying out a set of practical instructions provided by the teacher, to the point where they are able to plan and carry out a whole investigation themselves, and critically evaluate the outcome. However, the effort required will be well rewarded, as the student will then more fully understand the principles and parameters on which scientific method is based.

The course plan should allow for the gradual development of experimental skills over the two years (advisory minimum time). As 20 per cent of the final marks are derived from these skills, it would be advisable to devote this proportion of teaching time to them.

Students would benefit from being introduced to the concept of practical investigative work well before they begin the two-year examination course. Research evidence has shown that students take a considerable time to gain the confidence needed for higher level investigative skills such as critical evaluation.
Students should be encouraged to participate in practical work wherever possible. The scheme is designed to encourage a wide variety of activities, including those based on the collection of first-hand evidence and those that depend on secondary evidence. (The term 'evidence' is used to mean observations, measurements or other data.)

Before attempting investigations, students should be given shorter tasks that test only one or two skill areas. For example, as an introduction to the concept of planning whole investigations, students could be asked to write a plan for an experiment that is subsequently carried out in class. Teacher feedback is essential during this early stage of learning.

Towards the second half of the course, students should be provided with several opportunities to develop their investigative skills to allow them to achieve their highest potential in such work.

## Suggestions for practical work

The following is a guide to the practical work that students could carry out themselves and the demonstrations that teachers could use to amplify the teaching of the seven areas of content.

## 1 Force and motion

- Measurement of speed using a ticker tape timer and tape
- Measurement of acceleration using a ticker tape timer and tape
- Investigation of the momentum of bodies before and after collisions
- Measuring various forces, for example that required to open a door, using a spring balance
- Observation and measurement of terminal speed for a ball bearing falling through a measuring cylinder containing oil
- Investigation of the principle of moments using a metre rule, pivot and two known masses
- Determination of the position of the centre of gravity of an irregularly-shaped lamina using a plumb line
- Determination of the force-extension graphs for a metal spring and a rubber band by suspension of masses


## 2 Electricity

- Observation of a.c. and d.c. outputs using an oscilloscope, low voltage power supply and dry cell
- Construction of series and parallel circuits using light bulbs, switches and a power supply
- Determination of V-I graphs for a wire, filament wire and diode
- Observation of variation of resistance with level of illumination for an LDR
- Observation of variation of resistance with temperature for a thermistor
- Verification of Ohm's Law for a standard resistor
- Using a gold leaf electroscope to show the opposite charges on charged polythene and cellulose acetate rods rubbed with the same cloth
- Using a Van de Graaf generator to show that an electric current consists of a stream of charges


## 3 Waves

- Using a slinky spring to demonstrate the wavelength and amplitude of transverse and longitudinal waves
- Using a ripple tank to demonstrate diffraction of water waves
- Using a microwave generator and detector to demonstrate wave properties of microwaves
- Investigating the law of reflection of light using a plane mirror and a raybox (or pins)
- Investigating the refraction of light using a raybox (or pins) and rectangular glass prism
- Measuring critical angle using a circular glass block and a raybox (or pins)
- Measurement of the range of human hearing using a signal generator and loudspeaker
- Measurement of the speed of sound by a simple clapping method using a stopwatch
- Measurement of the speed of sound using a resonance tube and tuning forks
- Measurement of the speed of sound using a microphone, signal generator and oscilloscope
- Using an oscilloscope and a signal generator to determine the frequency of a sound wave
- Using an oscilloscope, signal generator and speaker to investigate the dependence of loudness on amplitude and pitch on frequency for a sound wave


## 4 Energy resources and energy transfer

- Measurement of efficiency using an electric motor lifting a weight attached to a string over a pulley
- Using a falling mass connected to a dynamics trolley, via a thread passing over a pulley, to investigate the conversion of gravitational potential energy to kinetic energy
- Determination of power generated by climbing a flight of stairs and timing the ascent of a known vertical height
- Using a dynamo and lamp to demonstrate the generation of electrical energy


## 5 Solids, liquids and gases

- Determination of the density of regularly and irregularly-shaped objects
- Determination of solid and liquid pressure
- Plotting a cooling curve for ethanamide
- Observing Brownian motion using a microscope, glass cell, lamp and glass rod
- Investigating Boyle's Law and the Pressure Law


## 6 Magnetism and electromagnetism

- Plotting magnetic fields using bar magnets and plotting compasses (and/or iron filings)
- Investigating the magnetic fields associated with a straight wire, coil and solenoid carrying an electric current
- Investigating the factors affecting the strength of an electromagnet
- Building a model motor
- Investigating the factors affecting the size and direction of an induced voltage using a bar magnet, long solenoid and centre-zero meter
- Investigating a transformer using C-cores, wiring, a low voltage a.c. supply, voltmeter and lamp


## 7 Radioactivity and particles

- Detection of background radiation using a Geiger-Muller tube
- Investigating the penetrating power of alpha, beta and gamma radiation using radioactive sources, absorbers and a Geiger-Muller tube


## Suggested titles for investigations

The experimental and investigative tasks below could be performed using the resources recommended in the course planner along with other available resources.

1 Compare the insulating properties of different materials such as bubble wrap, cotton wool and plastic foam.

2 Investigate the effect of length on the resistance of a wire.
3 Investigate the effect of the height fallen by an object on the depth of the crater produced.
4 When light travels through a glass block, investigate how the length of the glass block affects the lateral displacement of the light ray.

5 Investigate the factors affecting the time period of a simple pendulum.
6 Investigate how the temperature of a squash ball affects the height it bounces off the floor.
7 Investigate the percentage energy losses of different bouncing balls.
8 Investigate how the weight of a body affects the size of the frictional force opposing its motion.

9 Investigate how the area of a model parachute affects its rate of descent.
10 Investigate how the depth of water affects the speed of water waves.

## Resources

Please note that while resources are correct at the time of publication, they may be updated or withdrawn from circulation. Website addresses may change at any time.

## Textbooks

The following textbooks are recommended for this course
Blunt J and Chapple D — IGCSE Physics Resource Pack (NEC, 2005) ISBN 1843083094
Duncan T — IGCSE Physics (Hodder, 2002) ISBN 9780719578496

## Website

Practical experiments (Institute of Physics (IOP)) — www.practicalphysics.org

## Appendices

Appendix 1 - Physics formulae for relationships ..... 27
Appendix 2 - Electrical circuit symbols ..... 29

## Appendix 1 - Physics formulae for relationships

The relationships listed below will not be provided for IGCSE students either in the form given or in re-arranged form.
(i) The relationship between average speed, distance and time:
average speed $=\frac{\text { distance }}{\text { time }}$
(ii) The relationship between force, mass and acceleration:
force $=$ mass $\times$ acceleration
acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
(iii) The relationship between density, mass and volume:
density $=\frac{\text { mass }}{\text { volume }}$
(iv) The relationship between force, distance and work:
work done $=$ force $\times$ distance moved in direction of force
(v) The energy relationships:
energy transferred = work done
kinetic energy $=1 / 2 \times$ mass $\times$ speed $^{2}$
gravitational potential energy $=$ mass $\times \mathrm{g} \times$ height
(vi) The relationship between mass, weight and gravitational field strength: weight $=$ mass $\times$ gravitational field strength
(vii) The relationship between an applied force, the area over which it acts and the resulting pressure:
pressure $=\frac{\text { force }}{\text { area }}$
(viii) The relationship between the moment of a force and its distance from the pivot:
moment $=$ force $\times$ perpendicular distance from the pivot
(ix) The relationships between charge, current, voltage, resistance and electrical power:
charge $=$ current $\times$ time
voltage $=$ current $\times$ resistance
electrical power $=$ voltage $\times$ current
(x) The relationship between speed, frequency and wavelength: wave speed $=$ frequency $\times$ wavelength
(xi) $\frac{\text { input (primary) voltage }}{\text { output (seconday) voltage }}=\frac{\text { primary turns }}{\text { secondary turns }}$
(xii) The relationship between refractive index, angle of incidence and angle of refraction:
$n=\frac{\sin i}{\sin r}$
(xiii) The relationship between refractive index and critical angle:
$\sin c=\frac{\mathbf{1}}{\boldsymbol{n}}$
(xiv) The relationship for pressure difference: pressure difference $=$ height $\times$ density $\times \mathrm{g}$ $p=h \rho g$

Appendix 2 - Electrical circuit symbols

| Description | Symbol | Description | Symbol |
| :---: | :---: | :---: | :---: |
| Conductors crossing with no connection | - | Heater | $\square \square$ |
| Junction of conductors |  | Thermistor | $5$ |
| Open switch | $-\infty$ | Light-dependent resistor (LDR) |  |
| Closed switch | $\bigcirc 0$ | Relay | $\bigcirc$ |
| Open push switch | $=$ | Diode | $\Delta$ |
| Closed push switch | 00 | Light-emitting diode (LED) | $\Delta$ |
| Cell |  | Lamp | $8$ |
| Battery of cells |  | Loudspeaker | $\square$ |
| Power supply | $\begin{aligned} & \underset{\text { or }}{+} \quad \bar{\circ}-\text { (d.c. }) \\ & \text { - } \sim 0 \text { (a.c. }) \end{aligned}$ | Microphone |  |
| Transformer |  | Electric bell | $\Omega$ |
| Ammeter |  | Earth or ground | $\underset{=}{\perp}$ |
| Milliammeter |  | Motor | M |
| Voltmeter | v | Generator | (G) |
| Fixed resistor |  | Fuse/circuit breaker | $\square$ |
| Variable resistor |  |  |  |


advancing learning, changing lives

## November 2008

For more information on Edexcel and BTEC qualifications
please visit our website: www.edexcel.com

Edexcel Limited. Registered in England and Wales No. 4496750
Registered Office: One90 High Holborn, London WC1V 7BH. VAT Reg No 780089807

