Centre No.		Surname		Initial(s)		
Candidate No.		Signature				
	Paper Reference(s) 4420 /1			Ez	kaminer's us	e only
	4420/	LT				
	Lone	don Exam	inations IG	CSE Team	m Leader's ι	ise only
	Physi	cs				
	Paper	1F			Question Number	Leave Blank
	For	ındatio	n Tier		1	
				-	2	
		2	er 2007 – Morning	,	3	
	Time:	l hour 30 mini	ates		5	
		equired for examination	Items included with question	n papers	6	
	Nil		Nil		7	
					8	
Instructions to	Candidates				9	
In the boxes above		tre number and candida	te number, your surname, initia	l(s) and	10	
			ck that you have the correct que	estion paper.	11	
Show all the steps	in any calculation	spaces provided in this cons and state the units.	question paper.		12	
Calculators may b	e used.				13	
Information for					14	
There are 15 ques	tions in this ques		nark for this paper is 100.		15	
There are 24 page Useful formulae a		n paper. Any blank pag 2.	es are indicated.			
Advice to Cand	idatas					
Write your answe		good English.				

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. $\ensuremath{\mathbb{C}} 2007$ Edexcel Limited.

Printer's Log. No. H28021A W850/U4420/57570 4/5/6/2/1

Turn over

Total

FORMULAE

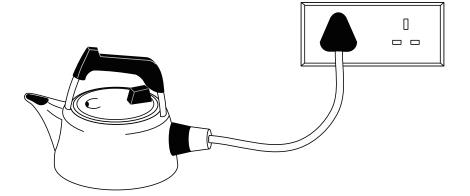
You may find the following formulae useful.

$$power = \frac{\text{work done}}{\text{time taken}}$$

$$P = \frac{W}{t}$$

$$power = \frac{energy transferred}{time taken} \qquad P = \frac{W}{t}$$

frequency =
$$\frac{1}{\text{time period}}$$
 $f = \frac{1}{T}$

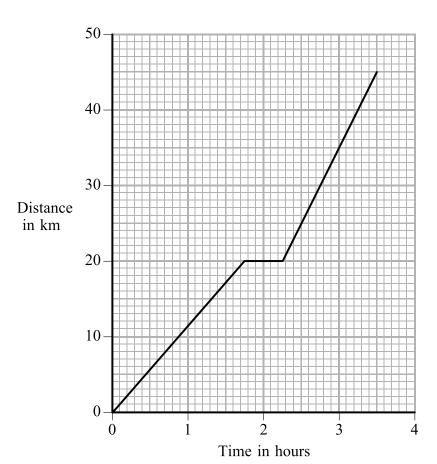

Where necessary, assume the acceleration of free fall, $g = 10 \text{ m/s}^2$.

	ox lists the colours of the visible spectrum in ord	
Write	the names of the two missing colours on the dot	tted lines.
	orange	
	yellow	
	green	
	blue	
	indigo	
		(2)
(b) The !	ox below lists radiations in the electromagnetic s	spectrum
(b) The t	on delow lists radiations in the electromagnetic s	spectrum.
	radio waves	
	microwaves	
	infra-red radiation	
	visible light	
	ultraviolet light	
	X-rays	
	gamma radiation	
Tick	✓) the correct ending for each sentence.	
		decreases
(i) I	rom top to bottom in the list, the wavelength i	increases (1)
		stays the same
	de	ecreases
(ii) I	rom top to bottom in the list, the frequency inc	icreases (1)
	sta	ays the same
	decrea	ases
	rom top to bottom in the list, the speed increas	ses (1)
(iii) I	·	
(iii) I		the same

3

Leave blank

2. (a) Electrical heating is used in different ways, for example in an electric kettle.



Q2

(2)

(Total 8 marks)

4. (a) The distance–time graph shows a journey which a cyclist makes between two villages.

(i) How long in hours does the whole journey take?

Time = hours (1)

(ii) For how long in hours does the cyclist rest during her journey?

Time = hours (1)

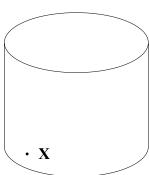
(iii) What is the distance in kilometres between the villages?

Distance = km (1)

(iv) The cyclist's average speed is greater after her rest than before her rest.

How can you tell this from the graph?

(2)


(b) (i)	State the equation which relates average speed, distance moved and time taken.	Lea blai
	(1)	
(ii)	What is the unit of speed when distance moved is measured in metres and time taken is measured in seconds?	
	(1)	Q4
	(Total 7 marks)	

7

Turn over

Leave
blank

5. (a) A fluid is either a liquid or a gas. The diagram shows a fluid which is at rest in a tank. X is a point in the fluid.

Tick (\checkmark) the correct ending for each sentence.

(i) When the fluid is a gas the pressure at X acts

equally in all directions	
mostly downwards	
mostly sideways	
mostly upwards	

(1)

(ii) When the fluid is a liquid the pressure at X acts

equally in all directions	
mostly downwards	
mostly sideways	
mostly upwards	

(1)

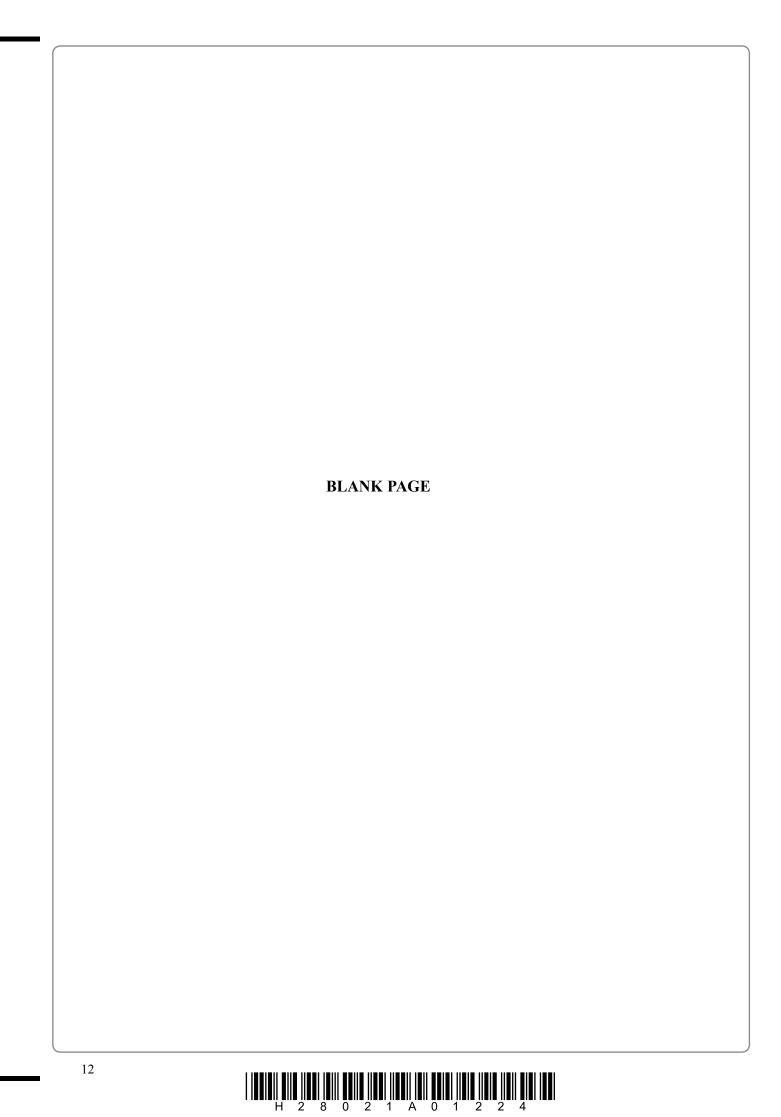
(b) State the equation which relates area, force and pressure.

/4
(1

(c) Complete the table.

Quantity	Name of unit	Symbol for unit
force	newton	N
area		
pressure		

(4)


Use the words area, force and pressure to explain how the pressure on the floor changes. (3) (Total 10 marks)	d) A student sits normally. Then he rocks back on his chair.	
changes		
changes	Use the words area, force and pressure to explain how the pressure on th	e floor
(3)	changes.	
(3)		
(Total 10 marks)		(3)
	(Total 10 m	narks)

	electrons	isotopes	neutrons	pressure
	protons	tem	perature	time
	(i) The activity of ra	adioactive sources de	creases with	
	(ii) Half-life is differ	ent for different		
b)			957 the mineral had arwas 40 000 becquerels.	(1) activity of 80 000
	(i) Calculate the hal	f-life in years of the	mineral.	
	(ii) Predict the mon becquerels.	th and year when th	ne activity of the min	
	(iii) What is the symb	ool for the unit becqu	ierel?	(1)
				(1)
c)	Use words from the b	oox to complete the s	entence.	
<i>-</i>)	computers	radiotherapy s	pecimens televisi	on tracers
<i>.</i> ,				

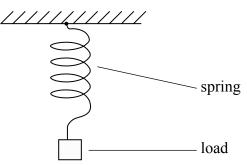
Leave blank 7. (a) (i) Name the space around a magnet where its magnetism can be detected. **(1)** (ii) The diagram shows some magnetic field lines around a bar magnet. Write N and S on the bar magnet to show the position of its poles. **(1)** (iii) On the diagram below, draw some magnetic field lines in the space between the ends of two bar magnets. N **(2)** (b) Seven materials were placed in a magnetic field. Their names are in the box. Magnetism was induced in only one of them. <u>Underline</u> its name. aluminium brass copper silver steel tin tungsten **(1) Q7** (Total 5 marks)

11

Turn over

	attraction	electrons	friction	gravity	metals
	neutrons	plastics	prote	ons	repulsion
Mate:	rials which do not	t conduct electricity	y, such as	a	re known as
		be charged by			
Positi	ive charge on a m	aterial is due to		being remove	ed from its
urfa	ce and negative cl	harge is due to	b	eing added to	its surface.
The f	forces between un	like charges are for	rces of		
					(Total 5 marks)
					,

Leave
hlank


9.	(a)	Complet	te the sentence

Hooke's law states that a force acting on a material produces an extension which is

..... to the force.

(1)

(b) A student attaches a load to the end of a spring.

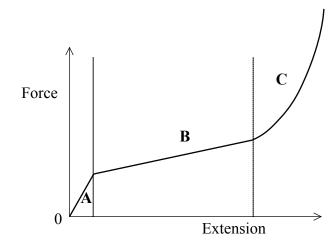
(i) Name the type of force acting in the stretched spring.

(1)

(ii) The student measured the length of the spring for different loads. The table shows her data.

Load (N)	0	1.0	2.0	3.0	4.0	5.0	6.0
Length of spring (mm)	30	70	110	150	190	250	320

1. Deduce the load in newtons that would produce a length of 130 mm.


Load = N

2. Estimate the maximum load in newtons at which the spring obeys Hooke's law.

Maximum load =N

Leave blank

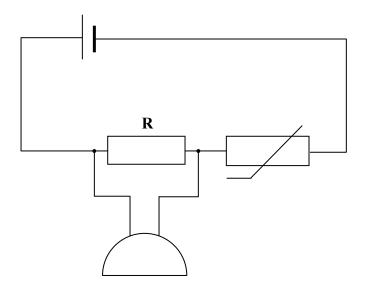
(c) A force-extension graph for a material is shown. Three regions A, B and C are labelled.

(i) In which region is Hooke's law obeyed?

(1)

(ii) In which region is the material easiest to extend?

(1)


(iii) Explain your answer to (ii).

(Total 7 marks)

(1)

Q9

10. A circuit contains a resistor \mathbf{R} , a thermistor and a buzzer connected to a cell as shown. The circuit can be used as a simple fire alarm.

(a) (i) Complete the sentence.

When temperature increases, the resistance of a
thermistor

(ii)	What happens to the current in the circuit when the temperature increases?	
		(1)

(b) (i)	State the equation which relates voltage, current and resistance.	
		(1)

(ii)	When temperature increases,	does the voltage	across R stay	the same,	increase or
	decrease?				

(iii) Explain your answer.	

(2)

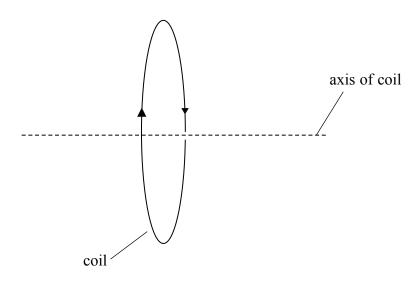
(1)

11. (a)	.) (i	i) Define frequency.	Leav blank
	(i	ii) Define time period.	
		(1)	
(b		A student has a heart rate of 72 beats per minute. Calculate	
	(i	i) the frequency of his heart beat in hertz	
		Frequency = Hz (1)	
	(i	ii) the time period of his heart beat in seconds.	
		Time period =s	

(c) Generally the heavier an animal is, the lower is its heart rate. The data in the table gives the heart rate of animals of different masses.

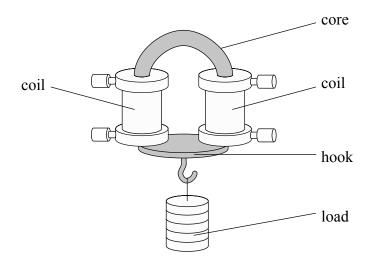
Mass (kg)	100	200	300	400	500	600
Heart rate (beats per minute)	63	53	48	45	42	40

(i) Use the grid opposite to plot a graph of heart rate against mass. Draw a smooth curve for your plotted points.


(3)

Leave blank 60-Heart rate in beats per minute 50-40 100 400 200 300 500 600 Mass in kg (ii) This animal has a mass of $5000 \, kg$. Explain why you cannot use your graph to predict the heart rate of this animal. **(1)** Q11 (Total 8 marks)

1 2. (a)	Define the following terms.	b
	(i) Atomic number	
	(1))
	(ii) Mass number	
	(1))
	(iii) Isotope	
	(1))
(b)	How many of the following particles are found in a neutral atom of ²³ ₁₁ Na?	
	(i) protons	
	(1))
	(ii) neutrons	
	(1))
	(iii) electrons	
	(1))
(c)	Alpha, beta and gamma are three types of ionising radiation. Which one of these radiations does not contain any of the particles mentioned in (b)?	2
	(1))
(d)	State one danger of ionising radiations.	
	(1)	<u>Q</u>
	(Total 8 marks)	


13. (a) Two	o students make a two-dimensional model of a liquid.	Leave blank
	Giv	ve one criticism of the arrangement of the particles in this model.	
(b) Wh	en the temperature of a liquid is raised, evaporation takes place.	
(0	(i)	What happens to the particles during evaporation?	
	(;;)	(1)	
	(11)	Describe what has happened to the position and motion of the particles after all the liquid has evaporated.	
		(2)	Q13
		(Total 4 marks)	

14. (a) The diagram shows a flat circular coil carrying a current. On the diagram, sketch the magnetic field pattern of the coil. Use arrows to show the direction of the magnetic field lines.

(3)

(b) When there is a current in the coils the electromagnet shown below is able to carry small loads from a hook. When the current is switched off the hook and load fall off.

(i) Name a suitable material for the core and the hook.

(ii) Explain why this material is suitable.	Leave blank
(2)	Q14
(Total 6 marks)	
QUESTION 15 IS ON THE NEXT PAGE	

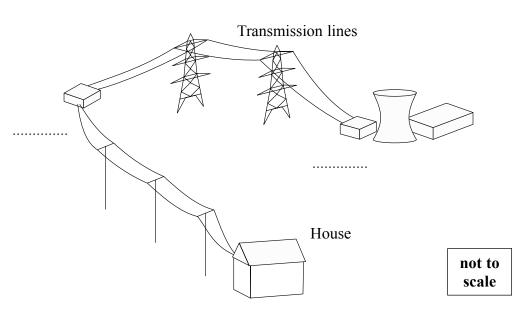
12 turns

input voltage 40 V

Leave
blank

.....

Output voltage = V (3)


36 turns

(ii) Is the output voltage a.c. or d.c.?

(1)

(b) The diagram below shows an electricity generation and transmission system. Step-up and step-down transformers are used.

On the dotted lines label these transformers U (step-up) or D (step-down).

(1) Q15

(Total 5 marks)

TOTAL FOR PAPER: 100 MARKS

END