IGCSE PHYSICS 4420, NOVEMBER 2005 MARK SCHEME

Paper 2H

Question 1

(a) longitudinal 1
(b) use and recall $v=f \times \lambda \quad 1$
$384 \times 0.86=330(\mathrm{~m} / \mathrm{s}) \quad 1$
(c) no 1
(i) not within (audible) range frequency too high
(ii) of $20-20000 \mathrm{~Hz}$

Total 5 marks

Question 2

(a) insulator
zero if both boxes ticked for one row
1
(b) 1 mark each for any two

- (electrons) move from the cloth
- to the rod
- electrons are negative(ly charged)

Maximum
(c) to the rod / right
(i)
(c) positive /similar charges repel
(ii)
or
opposite / unlike charges attract

Question 3

(a) five correctly plotted points
best straight line
\pm half a small square
-1 for each misplot or missing plot to a maximum of 2
through 0,0 and at least one point on either side of the line
(b) $\quad 2.9(\mathrm{~cm})$
(c) not linear relationship for large loads OWTTE
(d) (helical)spring
(i)
(d) straight region indicates wire or
(ii) spring (1)
curved line would be seen for rubber band (1)
extension too great for wire (1) not allowed if answered wire in(i)
$2.8-3.0 \mathrm{~cm}$ read from graph \pm half
small square
beyond elastic limit
allow (metal) wire 1
any other reason why it might be spring/wire
any reason why it isn't rubber band
reason why it isn't wire

Maximum

Question 4

(a)

(b) none/zero
(b) particle moving parallel to the
(ii) field(lines)

Question 5

(a) light to
electrical
(b) $6000 / 120$
(i)
$=50(\mathrm{~W})$
(b) 1 mark each for any two
(ii)
rays change angle of incidence at roof (1)
clouds/weather conditions (1)
no sun at night (1)

1
3

1

Total 5 marks

1
$6000 / 2=3000 \quad 1$
scores 1

Question 6

(a) reflection 1
(b) draw reflected ray angles of incidence and reflection equal by eye
draw second ray from cat tail ditto 1 reflected in mirror
drawn reflected rays converge at C

Question 7

(a) a.c. not 'cell is d.c.'
(a) larger voltage
(b) lamps in parallel with cell
each lamp can be switched off/on independently

Question 8

(a) correct substitution once into
(i)
density $=\frac{\text { mass }}{\text { volume }}$
copper 9000 iron 8000
(a) iron 1
(ii)
(a) copper 1
(b) measure length, (breadth, width) OWTTE 1 with a rule 1
multiply together or cube it 1

Question 9

(a) $Y \ldots X \ldots Z$
(i)
(a) direction(s) shown
(ii)
(a) $\quad(U=) X+Z-Y$
(iii)
(b) either $0.750(3) \mathrm{m} / \mathrm{s}^{2}$ east (1)
or force $=$ mass \times acceleration (1) acceleration $=$ force \div mass(1)
all correct in correct order 1
or (represented by) arrows 1
or any order of $+X,+Z$ and $-Y$ 1
both unit and direction required for the 4th mark
or $1125=1500 \times$ acceleration
or acceleration $=1125 \div 1500$

Total 7 marks

Question 10

(a) electrical
(b) reduce frequency
(i)
(b) increase amplitude
(ii)
(C) diffraction
(i)
(c) ...(the width of the) gap...
(ii)
(d) measure distance (1)
start to measure time when sound generated (1)
one correct mention of appropriate measuring instrument i.e. metre rule/tape, stop watch/clock and no inappropriate mention (1)
indication that speed $=$ distance \div time (1)
allow 'electricity'
1
allow 'lower/drop' frequency or increase wavelength

1
allow 'raise' amplitude
1
allow 'diffracted’ 1
1
if 'echo method' must be clear that this is the distance there and back if 'observer method' must be clear how observer knows the moment sound generated
points may be credited either from written response or from diagram but do not credit the point if writing and diagram contradict

Total 9 marks

Question 11

(a) either $6.75(\mathrm{~W})(2)$
or power $=$ current \times voltage (1)
or power $=1.5 \times 4.5$
2
(b) either 4050 (J) (2)
or clear indication that time is 10 x $60 /=600$ (s) (1)
(c) flow/movement of electrons (1)
from negative (end/side) to positive (end/side) (1)
(d) any two, (1) each

- collisions between electrons and ions/atoms/nuclei/other particles
- transfer of energy
- (large) rise in temperature
- light /infra-red (radiation) given out

Question 12

(a) either $50(.00)(3)(\mathrm{m} / \mathrm{s})$
or $K E=1 / 2 \mathrm{mv}^{2}$

$$
\begin{equation*}
v^{2}=2 \times \mathrm{KE} \div \mathrm{m} \tag{1}
\end{equation*}
$$

(b)
either
(b) 4375 (J)
(1)
(i)
(b) any one of (1)
(ii)

- conservation of energy applies
- air resistance/friction negligible
- stone does not hit anything (on the way down)
- (energy transfer) 100 \% efficient
- no energy transferred (as it fell) as heat/sound
- zero gravitational/potential energy at ground level
or gets (much) hotter
do not credit 'molecules'
(
or
(b) more than 4375 (J)
(i)
(b) any one of (1)
(ii)
- (some) energy used to overcome friction/air resistance
- energy transfer is less than 100 \% efficient
- (some) energy transferred (as it fell) as heat/sound
- some gravitational/potential energy at ground level
do not credit 'some energy transferred when it landed'

Total 6 marks

Question 13

(a) appropriate statement (1)
appropriate amplification/ comment/ explanation (1)
(b) appropriate statement (1)
appropriate amplification/ comment/ explanation (1)
examples of advantage
no fuel is burned so no atmospheric pollution
nothing has to be transported to the site nor any waste disposed of
coal/oil/gas is not burned so does not increase the 'greenhouse' effect
do not credit '... cause the greenhouse effect ' for this 2nd mark

2
examples of disadvantage
wind not always strong enough /at
appropriate strength so no electricity generated
wind (strength) may not match demand for electricity
visual/sound pollution so loss of (scenic) value/tourist potential
manufacture of the material to make the turbines results in pollution

Question 14

(a) any two, (1) each
(i)

- fixed mass
- temperature constant
- (remains an) ideal gas
(a) either $0.58\left(\mathrm{~m}^{3}\right)(2)$
(ii)
or (volume =)
$120 \times 1.2 \div 250$ (1)
(b) $0 /$ zero (K)
(i)
(b) the particles are not moving
(ii)
(c) any three, (1) each
- heat conducted through the cylinder
- (average/kelvin) temperature of the gas/particles increases
- (average) speed of the particles increases
- more (energetic) collisions with the (inside of) the cylinder
- pressure increases
or lowest possible temperature

Total 9 marks

Question 15

(a) step-up transformer(s) used after
(i) generation/at start of transmission (1)
step-down transformer used after transmission/during distribution (1)

Either allow 'some increase and some decrease the voltage/current' for (1) mark only
or allow '(transformers used) at beginning and end' for (1) mark only
points may be credited in either (a)(i) or (a)(ii)
or high voltage not appropriate for domestic equipment (1)
(b) either 15 (mA) (3)
or $V_{p} I_{p}=V_{s} I_{s}(1)$
$I_{p}=V_{s} I_{s} \div V_{p}(1)$

$$
\begin{aligned}
& \text { or } 230 \times I_{p}(\div 1000)=6 \times 575(\div \\
& 1000) \\
& \text { or } I_{p}(\div 1000)=6 \times 575(\div 1000) \div \\
& 230
\end{aligned}
$$

Question 16

(a) to ensure that the current flows through all of the coil
(b) to the right/inwards
(i)
(b) any two, (1) each
(ii)

- (use a) more powerful/stronger (permanent) magnet
- have more turns on the coil
- larger current
(c) $3.6(\mathrm{kHz})$
(i)
(c) kilohertz
(ii)
)
or to prevent a short circuit do not credit references to electric shock or to heat insulation

1
allow 'towards the magnet' do not credit 'away from the cone'
allow 'have more coils on the coil' do not credit 'have a bigger coil' allow 'larger voltage'

2

1
allow 'kiloHertz'
allow 'phonetic' spellings
1

Total 6 marks

Question 17

(a) Isotopes
protons ... neutrons (1)
both in the correct order
2
(b) alpha/a
(i)
(b) helium nucleus $/{ }_{2}^{4} \mathrm{He}$ is an alpha/a
(ii) particle
(c) neutron/n
(i)
(c) fission
(ii)
(c) nuclei
(1)
(iii) neutrons
kinetic
accept 'movement'
(c) neutrons (given out) hit other nuclei (
(iv) uranium-235) (1)

Either must be a critical/sufficient mass (of uranium-235) (1)
or
which (in turn) release more (1) neutrons and so on
this mark should only be awarded if the notion is conveyed that the process continues

Total 11 marks

Question 18

(a) horizontal line from the maximum to the y-axis
(b) any six points, (1) each

- (object is) pulled down(wards) by (force of) gravity
- at the start the acceleration (downwards) is greatest
- so the slope (of the graph) is steep(est)
- the faster it falls the greater the (force of) friction/air resistance (becomes)
- so unbalanced/resultant force becomes less
- so the acceleration becomes less and the slope becomes gentler
- levels off when the unbalanced/resultant force becomes zero
must be clear that terminal velocity i : intercept on the y-axis
both parts are now required for this mark
or levels off when friction/air resistance (upwards) = gravity/weight (downwards)

Total 7 marks
Total for paper 120 marks

