Physics: Electronics

Whole unit overview

Recommended Prior Knowledge: This unit should be studied after the units Electricity 1 & 2, Electromagnetism and Waves.

Context: This unit builds on some basic concepts in electricity and electromagnetism leading to applications in the field of electronics.

Outline: The unit begins with a study of cathode rays, their production and properties and this leads to use of the cathode ray oscilloscope and some electronic devices.

Learning Outcomes		Suggested Teaching Activities	Resources
4.6 (a)	Describe the production and detection of cathode rays.	Use a demonstration diode to show thermionic emission.	
	Describe their deflection in electric fields and magnetic fields.	Use a deflection tube and Helmholtz coils to demonstrate deflection of cathode rays in magnetic and electric fields.	
	Deduce that the particles emitted in thermionic emission are negatively charged.	magnetic and closure neras.	
	State that the particles emitted in thermionic emission are electrons.		
	Distinguish between the direction of flow of electron current and conventional current.	Refer back to the work on current electricity and the concept of free electrons.	

4.6 (b)	Describe in outline the basic structure, and action, of a cathode-ray oscilloscope (detailed circuits are <i>not</i> required). Use and describe the use of a cathode-ray oscilloscope to display waveforms.	Lead on from the deflection tube (see above) to the c.r.o. and demonstrate its use (e.g. in displaying frequency and amplitude of sound waves, as in Waves unit).	This site enables students to control a wave on an oscilloscope screen. http://www.phy.ntnu.edu.tw/~hwang/oscilloscope/oscilloscope.html
	Use and describe the use of a c.r.o. to measure pd's and short intervals of time (detailed circuits are <i>not</i> required).	Extension students can develop the c.r.o. work further, for example, measuring alternating p.d.s. produced by electromagnetic induction (refer to the Electromagnetism unit – this will provide a useful revision exercise).	
4.6 (c)	Describe the action of a variable potential divider (potentiometer). Describe the action of thermistors and light dependent resistors and show understanding of their use as input transducers. Describe the action of a capacitor as an energy store and show understanding of its use in time delay circuits. Describe the action of a reed switch and reed relay circuits. Describe the action of a reed switch and reed relay in switching circuits. Recognise and show understanding of circuits operating as light sensitive switches and temperature operated alarms (using a reed relay or other circuits).	A series of straightforward circuits should be used here so that students become familiar with the various components. The circuits could model the action of temperature sensors, light sensors, alarms, etc.	Students interested in electronics and related fields may like to design their own robots on line. http://www.tcm.org/html/galleries/robots/teachers.html This site gives instructions on how to build a relay. http://www.schoolnet.ca/general/electric-club/e/page22.html