UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0625 PHYSICS

0625/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0625	33

NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.

c.a.o. means "correct answer only".

e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated "e.c.f."

e.e.o.o. means "each error or omission".

brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets.

e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

<u>underlining</u> indicates that this <u>must</u> be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit.

Significant Answers are acceptable to any number of significant figures ≥ 2, except if specified otherwise, or if only 1 sig.fig. is appropriate.

Units It is expected that all final answers will have correct units. Deduct one unit penalty for each incorrect or missing unit, maximum 1 per question. No unit penalty if unit is missing from final answer but is shown correctly in the working.

Fractions These are only acceptable where specified.

Extras Ignore extras in answers if they are irrelevant; if they contradict an otherwise correct response or are forbidden by mark scheme, use right + wrong = 0

	Page 3				Syllabus	Paper
				IGCSE – October/November 2010	0625	33
1	(a)	(i)	(<i>v</i> – 2.7 r	u)/t OR v/t OR 8/3 m/s ²		C1 A1
		(ii)		OR 42 × answer from (i) OR 42 × 8/3 /112 N e.c.f.		C1 A1
	((iii)		ance in 1 st 3 secs =) 12 m OR (dist in last 3 secs of area of trapezium OR area of "top" triangle m/s	=) 88 m	C1 C1 A1
	(b)	long low low spe less	ger to er top er fini cific/a s slop	me to top speed) stal time) speed) any 2 all speeds lower (not speed decreases)) seless acceleration (in first section)) slope/greater deceleration in 2 nd section)	2	B1+B1
						[Total: 9]
2	(a)		our = vards	40 N OR all four add up to 160 N		B1 B1
	(b)	(i)	W×	0.17/0.20/0.23 = 160 × 0.72/0.75/0.78 0.17 = 160 × 0.78 or 600 N 734 N		C1 C1 A1
		(ii)	force	e by P = 160 + answer to (i) correctly evaluated		B1
			all o	thers = 0		B1
						[Total: 7]
3	(a)	(i)	bom	bardment/collide by air molecules/particles/atoms		B1
		(ii)	fast-	er/very small/smaller than smoke particles/too small moving/high kinetic energy lom movement/movement in all directions	to be seen))	any 2 B1+B1
	(b)	(i)	incre	eases (builds up)		B1
		(ii)		nolecules/particles/atoms bombard/hit walls	ı	B1
			(ign	ecules faster/higher energy when temperature raised ore vibrate faster)		B1
			grea	ter force (per unit area) OR more collisions (per s	econd)	B1
						[Total: 7]

	Page 4		1	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2010	0625	33
4	(a)	(i)	cond	duction		B1
		(ii)	(ii) molecules at hot end vibrate more/have high/more energy OR knocked by molecules/free electrons at hot end have more energy			B1
				rgy/vibration transferred to neighbours/shared (energetic) electrons move along rod		В1
	(b)	copper is a better conductor OR iron is a poorer conductor (ignore electrical)				
	(c)	iror	n cond	ducts heat slowly OR poor conduction by iron sidev	ways from flame	B1
		abo	ove ga	auze: flame retains its energy OR gas hot enough to	burn	B1
		cop	oper c	conducts heat rapidly OR good conduction by copp	er sideways from f	flame B1
		abo	ove ga	auze: gas not incandescent above gauze OR gas no	ot hot enough to bu	urn B1
						[Total: 8]
5	(a)			ergy to raise/change temperature /unit mass through 1°C/1K/unit temperature		M1 A1
	(b)	(i)	dark	ter colours absorb more OR lighter/shiny colours	absorb less	B1
		(ii)	7 3 . G	82 mass of 1m ² =) volume × density OR $D = M/V$ OR (8 kg $Q = mc\theta$ 82 = 78 × 450 × θ (e.c.f. from 1,2) .00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)	1 ×) 0.01 × 7800	B1 C1 A1 B1 C1 A1
						[Total: 9]

	Page 5			Syllabus	Paper
		IGCSE – October/Nove	ember 2010	0625	33
6	(a) <i>mgh</i> C 5.5 J	PR 0.5 × 10 × 1.1			C1 A1
	(b) (i) 1.5	(J)			В1
	OR	rgy used to deform ball/ground strain energy stored in (deforme heat generated in deformed ball			B1
	(c) (initial er use of ½ 7.6 m/s	nergy =) 9 + answer to (a) , corre	ctly evaluated		C1 C1 B1
					[Total: 7]
7		es (as current increases) creasing rate			M1 A1
	(b) (i) 25 g	Σ			В1
		in any form OR 0.070 x 25 1.8 V			C1 A1
		$P(t) IV ext{ OR } I^2R ext{ OR } V^2/R ext{ in any } P(t) P(t) P(t)$	form, numbers, sym	bols or words	C1 A1
	(c) (i) ans	wer to (b)(ii)			B1
	(ii) use 12.5	of $1/R = 1/R_1 + 1/R_2$ OR $R = 5 \Omega$	$R_1R_2/(R_1+R_2)$		C1 A1
					[Total: 10]
8	(a) Fig.8.1 Fig. 8.2	nothing seen/no current/no deflection/no volta deflection (of needle)/current in mV/voltage in	•	B1 B1	
	Fig. 8.3	deflection (of needle)/curr (ignore size of deflection) same direction as Fig. 8.2			M1 A1
	(b) increase	speed turns (of wire)/more coils	(ignore longe	er wire)	B1 B1
		e magnet strength	(ignore large	•	B1
					[Total: 7]

	Page 6		i	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2010	0625	33
9	(a)	(i)	redu	iced		B1
		(ii)	redu	iced		B1
	(b)	n =	spe	eed in air/vacuum ed in medium/glass in any form		B1
		2.0	/2.03	x 10 ⁸ m/s		B1
	(c)			n shown rrect, by eye		M1 A1
						[Total: 6]
10	(a)	(i)	R in	correct position, by eye		B1
		(ii)	3 ref	flected waves correctly meeting mirror) flected wave equidistant, by eye) -1 flected waves centred on candidate's R)	e.e.o.o.	B2
	(b)	2 nd	ray +	reflection correct by eye reflection correct by eye		B1 B1
				rays projected back, to meet behind mirror lled I and in correct position		B1
						[Total: 6]
11	(a)	rad	ioacti	vity is random/cannot be predicted		B1
	(b)	(i)	back	kground		B1
		(ii)	radia	ation from surroundings/something specific in lab) ation from soil/rocks (accept example)/14C/Sun/)	any 2	B1+B1
			∟art	h/space/cosmic radiation/radon)		[Total: 4]