Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/02

Paper 2 (Core)

October/November 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	niner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

UNIVERSITY of CAMBRIDGE International Examinations

This document consists of 14 printed pages and 2 blank pages.

1	(a)	(i)	Complete the	diagram in	Fia 11	for ethanol	C ₂ H ₂ O
	(a)	(! <i>)</i>	Complete the	ulagranii ii	1 1 19. 1.1	ioi etilalioi,	U21 16U

(ii) Calculate the relative molecular mass, M_r , of **ethanol**, C_2H_6O . Show your working.

$$M_{\rm r} =$$
 [2]

(iii) Complete the diagram in Fig.1.2 for ethanoic acid, C₂H₄O₂.

- **(b)** Ethanol, C₂H₆O, can be used as a fuel.
 - (i) Balance the following chemical equation for the products of the complete combustion of ethanol.

$$C_2H_6O + 3O_2 \longrightarrowCO_2 +H_2O$$
 [1]

(ii) Describe a chemical test for the carbon dioxide produced.

result [2]

(iii) Describe a chemical test for the water produced.

result [2]

(c)	A student adds dilute aqueous sodium hydroxide in excess to an aqueous solution of ethanoic acid in a beaker.
	Suggest how the pH number of the liquid in the beaker changes.
	[2]

2	(a)	Look at the Periodic Table on page 16.	
		State the number of electrons in the outer shell of an atom of	
		(i) the alkali metal caesium, Cs,	[1]
		(ii) the halogen astatine, At.	[1]
	(b)	Describe the formation of each of the ions in caesium astatide, CsAt, from the atoms caesium and of astatine.	of
			[2]
	(c)	A molecule of chlorine, Cl_2 , has a single covalent bond between the two atoms. A molecule of astatine, At_2 , has similar bonding.	
		Draw a diagram to show the bonding in a molecule of astatine, At ₂ .	
		Show only the outer electrons.	
			[0]
			[2]

3 Fig. 3. 1 shows part of a gas thermostat used in an oven.

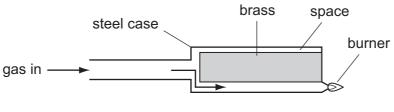


Fig. 3.1

		[2]
(a)	Explain why less gas enters the burner as the temperature in the oven gets higher.	

(b) Fig. 3.2 shows a loaf of bread cooking in the oven.

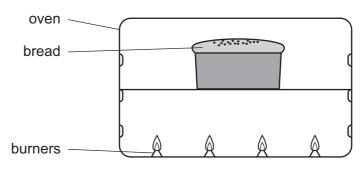
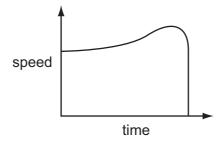


Fig. 3.2


Thermal energy is transferred from the burning gas to the bread by conduction, convection and radiation.

Explain, with reference to this example, what is meant by

(i)	conduction,		•••
(ii)	convection,		
(iii)	radiation.		•••
,		[[4]

4 A meteorite is a piece of rock which comes from the outer part of the solar system and enters the Earth's atmosphere.

Fig. 4.1 shows the speed of the meteorite as it approaches and finally strikes the Earth.

		Fig. 4.1	
(a)		the meteorite approaches the Earth it is travelling at a high speed and accelerate.	tes
	(i)	Name the type of energy it has due to its motion.	[1]
	(ii)	Suggest why it accelerates as it approaches the Earth.	
			••••
			2]
(b)	Wh	en the meteorite enters the Earth's atmosphere it slows down rapidly.	
	(i)	Mark, with an \mathbf{X} , the point on the graph at which the meteorite enters the Eart atmosphere.	h's [1]
	(ii)	Using scientific terms explain why the meteorite slows down.	
			[2]
	(iii)	State into what form the energy is converted.	
			[1]

5 A boy holds a long rope at one end and moves it sharply up and down to send waves along the rope. Fig. 5.1 shows the waves moving along the rope.

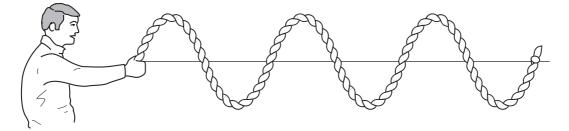


Fig. 5.1

- (a) Mark on the diagram
 - (i) the wavelength of the wave and label it λ ,
 - (ii) the amplitude of the wave and label it A.

[2]

(b) Explain how the boy changes the movement of his hand to

(i)	increase the amplitude of the wave,
(ii)	increase the frequency of the wave.

	[3]
--	-----

(c) When a guitar string is plucked a sound is heard.

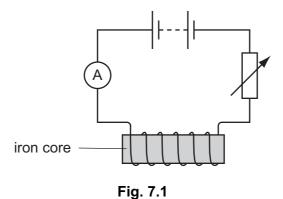
Explain how the sound is produced.

	•••••	

6	(a)	Balloons are used to lift radio equipme temperature and ozone levels.	nt high in the atmos	sphere to measure pr	essure,	
		Explain why helium, not hydrogen, is us	sed to fill these ballo	oons.		
	(b)	Filament lamps have a thin wire of tungsten that glows white hot when connected to the electrical supply.				
		Explain why argon, not air, is used to fi	Il these lamps.			
					[2]	
	(c)	An atom of helium has the notation 4_2 He	9.			
		An atom of argon has the notation 40 A	Ar.			
	Complete Fig. 6.1 for these atoms.					
		notation of atom	⁴ ₂ He	⁴⁰ ₁₈ Ar		
		number of protons in nucleus	2			
		number of neutrons in nucleus		22		

Fig. 6.1

2


arrangement of electrons in shells in the atom

0652/02/O/N/06

[3]

© UCLES 2006

7 Fig. 7.1 shows a circuit. The e.m.f. of the battery is 12V.

(a) What is the total resistance in the circuit when the ammeter reads 2A?

Show your working and state the unit.

	ro:
resistance =	[3]

[2]

(b) Two soft iron nails are attracted to the core as shown in Fig. 7.2.

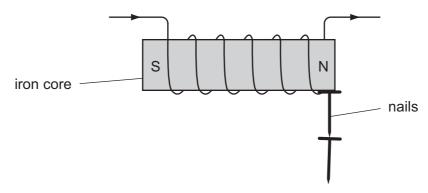


Fig. 7.2

- (i) Complete Fig. 7.2 to show the poles induced on the nails.
- (ii) Explain what happens to the nails when the current is gradually reduced to zero.

8

(a)	Iron, Fe, is described as a transition element.
	State two properties of iron that are common to transition elements.
	1.
	2[2]
/l=\	luon voosto viith diluto hydrochlorio poid
(a)	Iron reacts with dilute hydrochloric acid.
	Fe(s) + 2HC $l(aq)$ FeC $l_2(aq)$ + H $_2(g)$
	State two ways of increasing the speed of this reaction.
	1.
	2[2]
(c)	Iron goes rusty in damp air.
	State two ways to prevent iron from rusting.
	1.
	2[2]
(d)	Rust is a form of iron oxide. When this is heated in carbon monoxide, iron and carbon dioxide are formed.
	Explain this reaction in terms of oxidation and reduction.
	oxidation
	reduction
	[2]

9 An experiment is done to measure the half-life of an isotope of neon. The results are shown in Fig. 9.1

count rate/Bq	180	150	125	104	85	70	60	51	42
time/s	0	10	20	30	40	50	60	70	80

Fig. 9.1

- (a) The first four points are already plotted on the grid in Fig. 9.2.
 - (i) Plot the remaining points.
 - (ii) Draw a smooth curve through the points.

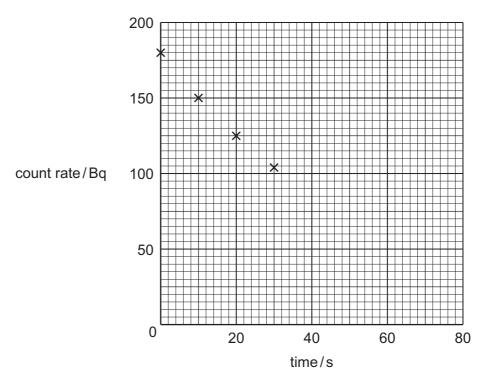


Fig. 9.2

(b) Use the graph to find the half-life of the isotope.

(c) The isotope decays by emission of a beta-particle (β -particle). Complete the equation to show the decay.

[2]

[3]

10	(a)	Energy is needed to convert a boiling liquid, at constant temperature, into a gas.
		Use the kinetic particle theory of matter to explain this fact.
		[2]
	(b)	Explain why evaporation from the surface of a liquid causes the temperature of the remaining liquid to cool.
		[2]
	(c)	(i) Fig. 10.1 shows two liquids being boiled for several minutes.
		thermometer thermometer
		liquid P liquid Q xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
		†
		heat
		Fig. 10.1
		Liquid P continues to boil at a constant temperature.
		Liquid Q continues to boil at a temperature that increases with time.
		Explain these observations.
		[2]
		(ii) Name one example of a liquid that behaves like liquid Q.
		[1]

[4]

11	(a)	Des	scribe how a polythene rod can be charged.
			[1]
	(b)	Fig.	11.1 shows a negatively charged polythene rod suspended by an insulating thread.
			insulating thread —
			polythene rod A
			Fig. 11.1
		Sta	te what happens when
		(i)	a negatively charged rod is brought up to end A ,
		(ii)	a positively charged acetate rod is brought up to end A,
	((iii)	a positively charged acetate rod is brought up to end B ,
	((iv)	an uncharged glass rod is brought up to end A .

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

This color Thi									Gr	Group						:		
1	_	=											=	≥	>	>	₹	0
1								T Hydrogen										4 He lium 2
Title Titl		9 Be Beryllium	_				-		7								19 Fluorine	20 Neon 10
1		24 Mg Magnesiur 12	ε										27 A1 Aluminium 13	28 Si lcon	31 Phosphorus	32 S Sulphur	35.5 C1 Chlorine	40 Ar Argon
Zr Nbb Nbb Moderum Nbb Moderum Tc Petternetum Rh Petternetum Agg Ccd Inp 119 112 118 118 112 118 118 118 Rhibum Nbbbum Nbbbum Anthmony Sp Tc Rhibum Particulum Agg Ccd Inp 118 Rhibum Rhibum Anthmony Sp 198 197 204 Anthmony Sp Tc Anthmony Anthmony Anthmony Anthmony Anthmony Anthmony Anthmony		40 Calcium	6	48 T Titanium 22	51 V Vanadium 23	52 Çr Iromium	Mn Manganese 25		59 Co Cobalt	59 Nickel	64 Copper 29	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
H		88 Sr Strontium	39	2r Zirconium 40	Nobium 41		Tc Technetium 43	Ru Ruthenium 44	Rh Rhodium 45	106 Pd Palladium 46		Cadmium Cad Cadmium 48	115 In Indium	Sn Tin 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon 54
140		137 Ba Barium 56	139 La Lanthanum 57	"	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78		201 Hg Mercury 80	204 T 1 Thailium 81	207 Pb Lead	209 Bi Bismuth	Po Polonium	At Astatine 85	Rn Radon 86
Ce Pr 140 141 144 Prometrium Smartium 5m 150 157 159 165 165 167 169 Cerium Promodymium Neodymium Prometrium Samarium Europium Gaddinium Geduinium Terbium Holmium Ferbium Ferbium Thulium tomici mass Thank Pa Upun Medicinum Name of Medicinum Americum Curium Berkelium Berkelium Californium Feminim Hordeeleum Michaeleum Indicatinum (contic) number Productinum Description Production Product		226 Ra Radium 88	AC Actinium 89															
a = relative atomic mass 232 238 N Np Pu Americium Americium Cm Bk Cf Es Fm Md X = atomic symbol Thorium Prodactinium Uranium Visanium Plutonium Plutonium Americium Curium Berkelium Califonium Einsteinium Fermium Mendelevium 99 91 91 92 96 97 97 98 99 100 101	ω' ⊲ ⊢	nthanc	oid series 1 series		140 Ce Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium	175 Lu Lutetium 71
		<i>w</i> ★	a = relative atonX = atomic symlb = proton (atom	nic mass bol nic) number	232 Th Thorium	Pa Protactinium 91	238 U Jranium	Np Neptunium 93	0	Am Americium 95	Cm	BK Berkelium	Califomium 98	ES Einsteinium 99	Fm Fermium	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).