Cambridge IGCSE Physical Science 0652 (Physics sections only)	Page number in New
italic = extended / supplement material	Physics for You
1. General Physics	
1.1 Length and time	
-use and describe the use of rules and measuring cylinders to determine a length or a volume	pages 8, 75, 365
<i>-use and describe the use of a mechanical method for the measurement of a small distance</i>	
-use and describe the use of clocks and devices for measuring an interval of time.	9
-measure and describe how to measure a short interval of time (including the period of a pendulum)	9
1.2 Speed, velocity and acceleration	
-define speed and calculate speed from total time total distance	122
-plot and interpret a speed/time graph or a distance/time graph	123-126
-recognise from the shape of a speed/time graph when a body is (a) at rest, (b) moving with constant speed, (c) moving with changing speed	124
-distinguish between speed and velocity	122
-recognise linear motion for which the acceleration is constant and calculate the acceleration	124-125
-recognise motion for which the acceleration is not constant	124-125
-calculate the area under a speed/time graph to determine the distance travelled for motion with constant acceleration	125
-demonstrate some understanding that acceleration is related to changing speed	124
-state that the acceleration of free fall for a body near to the Earth is constant	128-129
-describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity)	89, 128

1.3 Mass and weight	
-show familiarity with the idea of the mass of a body	pages 9, 68
-state that weight is a force	65
-demonstrate an understanding that mass is a property which 'resists' change in motion	68, 130
-demonstrate understanding that weights (and hence masses) may be compared using a balance	67, 75
-describe, and use the concept of, weight as the effect of a gravitational field on a mass	65, 67, 131
1.4 Density	
-describe an experiment to determine the density of a liquid and of a regularly shaped solid and make the necessary calculation	74-76
-describe the determination of the density of an irregularly shaped solid by the method of displacement	75
1.5 Forces	
(a) Effects of forces -state that a force may produce a change in size and shape of a body	65
-plot extension/load graphs and describe the associated experimental procedure	66
-describe ways in which force may change the motion of a body	69
-take readings from and interpret extension-load graphs (Hooke's law, as such, is not required)	66
-recognise the significance of the term 'limit of proportionality' for an extension-load graph and use proportionality in simple calculations	66
-recall and use the relation between force, mass and acceleration (including the direction)	130-131
(b) Turning effect -describe the moment of a force as a measure of its turning effect and give everyday examples.	90
perform and describe an experiment (involving vertical forces) to verify that there is no net moment on a body in equilibrium	91
(c) Centre of mass -perform and describe an experiment to determine the position of the centre of mass of a plane lamina.	92-3
Cambridge IGCSE page 2 of 10 Physical Science 0652 (Physics)	page numbers in Physics for You

(Physics)

-describe qualitatively the effect of the position of the centre of mass on the stability of simple objects.	page 93
1.6 Energy, work and power	
(a) Energy -give examples of energy in different forms, its conversion and conservation and apply the principle of energy conservation to simple examples	10-11, 98, 100-101
-show some understanding of energy of motion and energy of position (i.e. gravitational and strain)	108-109
-describe energy transfer in terms of work done and make calculations involving $F x d$	97-99
-use the terms kinetic and potential energy in context	108-109
-recall and use the expressions k.e.= ½ mv2 p.e. = mgh	108-109
b) Major sources of energy and alternative sources of energy -describe processes by which energy is converted from one form to another, including reference to:	
 (i) chemical/fuel energy (a regrouping of atoms) (ii) energy from water – hydroelectric energy, waves, tides (iii) geothermal energy (iv) nuclear energy (fission of heavy atoms) (v) solar energy (fusion of nuclei of atoms in the Sun) 	101, 104-106 15, 101, 106 15 349 156
-express a qualitative understanding of efficiency	102
-recall and use the mass/energy equation $E = mc2$	348
(b) Work -relate, without calculation, work done to the magnitude of a force and the distance moved	97
-describe energy changes in terms of work done	99
-recall and use $\Delta W = Fd = \Delta E$	97-99
(c) Power -relate, without calculation, power to work done and time taken, using appropriate examples	110
-recall and use the equation $P = E/t$ in simple systems	110-11

2. Thermal Physics	
2.1 Thermal properties	
(a) Thermal expansion of solids, liquids and gases -describe qualitatively the thermal expansion of solids, liquids and gases	page 21
-identify and explain some of the everyday applications and consequences of thermal expansion	22-23
-show an appreciation of the relative order of magnitude of the expansion of solids, liquids and gases	24
(b) Measurement of temperature -appreciate how a physical property which varies with temperature may be used for the measurement of temperature and state examples of such properties	26-27, 31-32
-recognise the need for and identify a fixed point	
-describe the structure and action of liquid-in-glass thermometers	26-27
-apply a given property to the measurement of temperature	
-demonstrate understanding of sensitivity, range and linearity	26, 362
-describe the structure and action of a thermocouple and show understanding of its use for measuring high temperatures and those which vary rapidly	
(c) Melting and boiling -describe melting and boiling in terms of energy input without a change in temperature	53-55
-state the meaning of melting point and boiling point	(27, 53, 55)
-distinguish between boiling and evaporation	(55, 56)
2.2 Transfer of thermal energy	
(a) Conduction -describe experiments to demonstrate the properties of good and bad conductors of heat	44-45
-give a simple molecular account of heat transfer in solids	41
(b) Convection -relate convection in fluids to density changes and describe experiments to illustrate convection	44-45

(c) Radiation -identify infra-red radiation as part of the electromagnetic spectrum -describe experiments to show the properties of good and bad emitters and good and bad absorbers of infra-red radiation	pages 46-48, 209
(d) Consequences of energy transfer -identify and explain some of the everyday applications and consequences of conduction, convection and radiation	40-51
3. Properties of waves, including light and sound	
3.1 General wave properties	
-describe what is meant by wave motion as illustrated by vibration in ropes, springs and by experiments using water waves	166-169
-use the term wavefront	168
-give the meaning of speed, frequency, wavelength and amplitude	167
-recall and use the equation $v = f\lambda$	167
 -describe the use of water waves to show (i) reflection at a plane surface (ii) refraction due to a change of speed (iii) diffraction produced by wide and narrow gaps 	168 168 169
-interpret reflection, refraction, diffraction using wave theory	168-169
3.2 Light	
(a) Reflection of light -describe the formation, and give the characteristics, of an optical image formed by a plane mirror	176-179
-use the law angle of incidence = angle of reflection	177
-perform simple constructions, measurements and calculations	176-178
(b) Refraction of light -describe the refraction, including angle of refraction, in terms of the passage of light through a parallel sided glass block	184-185
-determine and calculate refractive index using $n = \sin i / \sin r$	185
(c) Thin converging lens -describe the action of a thin converging lens on a beam of light	194-196
-use the term focal length	194
-use and describe the use of a single lens as a magnifying glass	196

(d) Electromagnetic spectrum -describe the main features of the electromagnetic spectrum and state that all e.m. waves travel with the same high speed in vacuo	pages 208-209, (210-7)
-state the approximate value of the speed of electromagnetic waves	209
-use the term monochromatic	
3.3 Sound	
-describe the production of sound by vibrating sources	224
-describe compression and rarefaction	225
-state the approximate range of audible frequencies	230
-show an understanding that a medium is required in order to transmit sound waves	225
4. Electricity and magnetism	
4.1 Simple phenomena of magnetism	
-state the properties of magnets	280
-give an account of induced magnetism	(281), 283
-distinguish between ferrous and nonferrous materials	(283)
-describe an experiment to identify the pattern of field lines round a bar magnet	282
-distinguish between the magnetic properties of iron and steel	283
-distinguish between the design and use of permanent magnets and electromagnets	281, 288
4.2 Electrostatics	
Electric charge -describe simple experiments to show the production and detection of electrostatic charges	241
-state that there are positive and negative charges	241
-state that unlike charges attract and that like charges repel	241
-state that charge is measured in coulombs	245
4.3 Electricity	
(a) Current -state that current is related to the flow of charge	245, 249

page numbers in Physics for You

-show understanding that a current is a rate of flow of charge and recall and use the equation $I = Q/t$	pages 249, 260
-use and describe the use of an ammeter	250
(b) Electro-motive force -state that the e.m.f. of a source of electrical energy is measured in volts	252
-show understanding that e.m.f. is defined in terms of energy supplied by a source in driving charge round a complete circuit	252, 261
(c) Potential difference -state that the potential difference across a circuit component is measured in volts	252
-use and describe the use of a voltmeter	252
(d) Resistance - recall and use the equation V = IR	253, 255
-describe an experiment to determine resistance using a voltmeter and an ammeter	255
-relate (without calculation) the resistance of a wire to its length and to its diameter	254
-recall and use quantitatively the proportionality between resistance and the length and the inverse proportionality between resistance and cross-sectional area of a wire	254
(e) V/I characteristic graphs -sketch the V/I characteristic graphs for metallic (ohmic) conductors	259
4.4 Electric circuits	
-draw and interpret circuit diagrams containing sources, switches, resistors (fixed and variable), lamps, ammeters, voltmeters, magnetising coils, transformers, bells, fuses and relays	248-255, 268, 320
-draw and interpret circuit diagrams containing diodes as rectifiers	316-317
-understand that the current at every point in a series circuit is the same	250
-recall and use the fact that the sum of the p.d.'s across the components in a series circuit is equal to the total p.d. across the supply	256
-give the combined resistance of two or more resistors in series	256
Cambridge IGCSE page 7 of 10	page numbers in

-state that, for a parallel circuit, the current from the source is larger than the current in each branch	page 251
-recall and use the fact that the current from the source is the sum of the currents in the separate branches of a parallel circuit	251
-state that the combined resistance of two resistors in parallel is less than that of either resistor by itself	257
-calculate the effective resistance of two resistors in parallel	257
4.5 Practical electric circuitry	
(a) Uses of electricity -describe the uses of electricity in heating, lighting (including lamps in parallel), motors	264-265, 268
-recall and use the equations $P = I V$, $E = I V t$ and their alternative forms	266, 261
 (b) Safety considerations -state the hazards of (i) damaged insulation (ii) overheating of cables (iii) damp conditions 	(268)
4.6 Electromagnetic effects	
(a) Electromagnetic induction -describe an experiment which shows that a changing magnetic field can induce an e.m.f. in a circuit	296-297
-state the factors affecting the magnitude of the induced e.m.f.	296
-show understanding that the direction of an induced e.m.f. opposes the change causing it	297
(b) a.c. generator <i>-describe a rotating-coil generator and the use of slip rings</i>	298
-sketch a graph of voltage output against time for a simple a.c. generator	299
(c) d.c. motor -state that a current-carrying coil in a magnetic field experiences a turning effect and that the effect is increased by increasing the number of turns on the coil	291-293
-relate this turning effect to the action of an electric motor	291-293
-describe the effect of increasing the current	290-293
(d) Transformer -describe the construction of a basic iron-cored transformer as used for voltage transformations	301-302
Cambridge IGCSE page 8 of 10 Physical Science 0652 (Physics)	page numbers in Physics for You

(Physics)

-show an understanding of the principle of operation of a transformer	pages 301-302
-use the equation $(Vp / Vs) = (Np / Ns)$	302-303
-recall and use the equation $Vp \ lp = Vs \ Is$ (for 100% efficiency)	302
-show understanding of energy loss in cables (calculation not required)	303, 305
-describe the use of the transformer in high-voltage transmission of electricity	303
-advantages of high voltage transmission	303
4.7 Cathode rays and the cathode-ray oscilloscope	
(a) Cathode rays -describe the production and detection of cathode rays	308-311
-distinguish between the direction of electron current and conventional current	249
-describe their deflection in electric fields and magnetic fields	309, 310
-deduce that the particles emitted in thermionic emission are negatively charged	309
-state that the particles emitted in thermionic emission are electrons	308
(b) Simple treatment of cathode-ray oscilloscope -describe in outline the basic structure, and action, of a cathode-ray oscilloscope (detailed circuits are not required)	309-310
-use and describe the use of a cathode-ray oscilloscope to display waveforms	311
-use and describe the use of a c.r.o. to measure p.d.s and short intervals of time (detailed circuits are not required)	311
5. Atomic Physics	
5.1 Radioactivity	
(a) Detection of radioactivity -show awareness of the existence of background radiation	340, 350
-describe the detection of α -particles, β -particles and γ -rays (β + is not included: β -particles will be taken to refer to β)	340-341

(b) Characteristics of the three kinds of emission	
-state that radioactive emissions occur randomly over space and	page 339
time	
-state, for radioactive emissions:	340-341
(i) their nature(ii) their relative ionising effects	
(iii) their relative penetrating abilities	
-describe their deflection in electric fields and magnetic fields	340-341
-interpret their relative ionising effects	340-341
(c) Radioactive decay	
-state the meaning of radioactive decay, using equations (involving	344-345
words or symbols) to represent changes in the composition of the nucleus when particles are emitted	
(d) Half-life -use the term half-life in simple calculations which might involve	344, 352
information in tables or decay curves	544, 552
(e) Safety precautions -describe how radioactive materials are	350
handled, used and stored in a safe way	550
5.2 The nuclear atom	
5.2 The nuclear atom	
(a) Atomic model	242 242
-describe the structure of an atom in terms of a nucleus and electrons	342-343
-describe how the scattering of α -particles by thin metal foils provides evidence for the nuclear atom	342
provides evidence for the nuclear atom	
(b) Nucleus describe the composition of the nucleus in terms of protons and	212 212
-describe the composition of the nucleus in terms of protons and neutrons	342-343
	242
-use the term proton number Z	343
-use the term nucleon number A	343
-use the term nuclide and use the nuclide notation $^{\rm A}{\rm X}_{_{\rm B}}$	343
(c) Isotopes	
-use the term isotope	343
-give and explain examples of practical applications of isotopes	346-347
end of specification content	