

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINA International General Certificate of Secondary Education	TIONS	N.W. KITERREPADE
CANDIDATE NAME			
CENTRE NUMBER	CANDIDATE NUMBER		
PHYSICAL SC Paper 3 (Exter		October/Nov 1 hour	0652/33 ember 2012 15 minutes
	swer on the Question Paper. <i>I</i> aterials are required.		
READ THESE	INSTRUCTIONS FIRST		
Write in dark bl	tre number, candidate number and name on all the work you hand in. ue or black pen. soft pencil for any diagrams, graphs, tables or rough working.		
Do not use stap	bles, paper clips, highlighters, glue or correction fluid.	For Exam	iner's Use
	E IN ANY BARCODES.	1	
Answer all que A copy of the P	stions. Periodic Table is printed on page 20.	2	
	e examination, fasten all your work securely together.	3	
	marks is given in brackets [] at the end of each question or part	4	
1			
		5	
		5 6	
		6	
		6 7	

This document consists of 18 printed pages and 2 blank pages.

Total

1 Table 1.1 shows elements in a period of the Periodic Table.

Table	1.	1
-------	----	---

group	I	II	III	IV	V	VI	VII
element	Na	Mg	Al	Si	Ρ	S	Cl

(a) Describe how the electronic structure of successive elements differs across the period.

.....[1]

(b) Complete Table 1.2 to show which of these elements are metals and which are non-metals.

Table 1.2

metals	non-metals

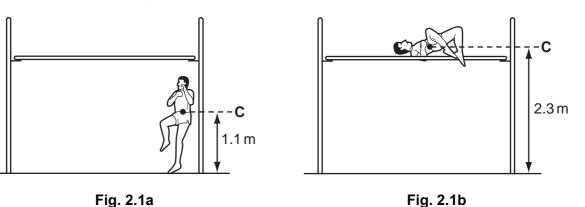
[1]

- (c) Calcium forms an ion Ca^{2+} . Chlorine form an ion Cl^{-} .
 - (i) Deduce the formula for the ionic compound calcium chloride.

......[1]

(ii) Describe, in terms of electrons, how calcium and chlorine atoms form calcium chloride.

[3]


(d) Sulfur dioxide is a covalent molecule.

In the box below, draw a diagram to show the arrangement of all the outer electrons of the atoms in a molecule of sulfur dioxide.

For Examiner's Use

[3]

2 Fig. 2.1a shows a high jumper about to leave the ground. Fig. 2.1b shows the same high jumper at the top of his flight.

The high jumper has a mass of 75 kg. Point **C** shows the centre of mass of the high jumper.

(a) Explain what is meant by the term centre of mass.

[2]

(b) (i) Calculate the increase in the gravitational potential energy of the high jumper from when he leaves the ground to when he reaches the top of his flight.

[g = 10 N/kg]

increase in gravitational potential energy = [2]

(ii) State the minimum kinetic energy with which the high jumper must leave the ground.

kinetic energy = [1]

4

For

Examiner's Use

(c)	On a second jump the same high jumper leaves the ground with kinetic energy of 750 J.	For
		Examiner's
	Calculate the speed at which he leaves the ground.	Use

speed = [3]

(d) The gain in potential energy of the high jumper is less than the work he does in his take off.

Suggest a reason for this.

 [1]

3 Magnesium sulfate is a salt that is soluble in water.

It can be made in the laboratory from solid magnesium oxide, MgO, and dilute sulfuric acid, H_2SO_4 .

For Examiner's Use

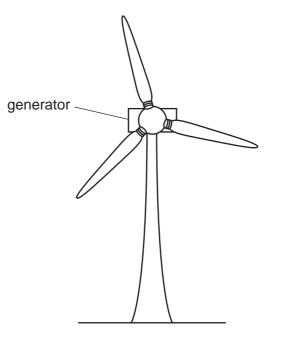
(a) Describe how you would make pure dry crystals of magnesium sulfate from solid magnesium oxide and dilute sulfuric acid.

[4]

(b) Write a balanced equation for the reaction between magnesium oxide and sulfuric acid. Include state symbols in your equation.

[3]

(c) Magnesium sulfate can also be made from magnesium hydroxide and sulfuric acid.


 $Mg(OH)_2 + H_2SO_4 \longrightarrow MgSO_4 + 2H_2O$

What is the maximum mass of magnesium sulfate that could be made from 5.0g magnesium hydroxide?

[Relative atomic masses: A_r: H,1; Mg,24; O,16; S,32]

Show your working in the box.

4 Fig. 4.1 shows a wind powered generator which has an efficiency of 30 %.

(a) The generator depends on a form of energy possessed by the wind.

Name this form of energy and briefly explain your answer.

[2]

(b) Explain what is meant by the phrase *the generator has an efficiency of 30%*.

[2]

(c) The generator has a maximum output of 4500 W at 230 V.Calculate the maximum current that can be taken from the generator.

[Turn over

[2]

current =

5 A student uses the apparatus shown in Fig. 5.1 to investigate the reaction between magnesium and hydrochloric acid.

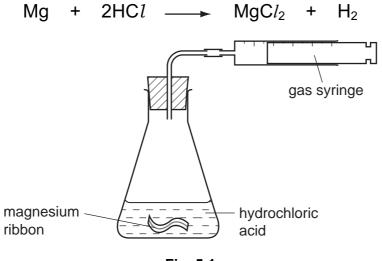


Fig. 5.1

She measures, at room temperature and pressure, the hydrogen given off when magnesium ribbon reacts with an excess of dilute hydrochloric acid.

Results of her investigation are shown in Fig. 5.2.

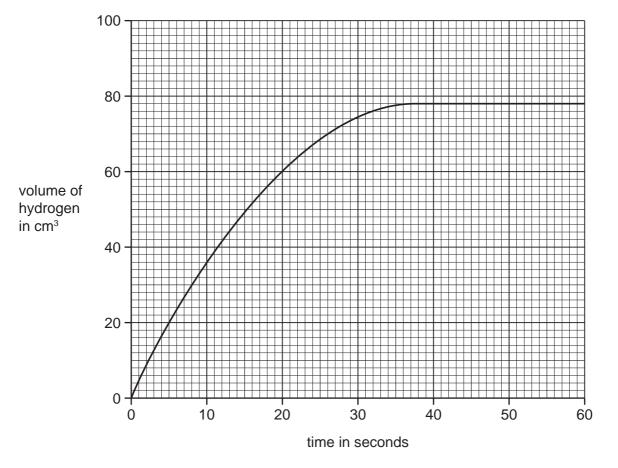
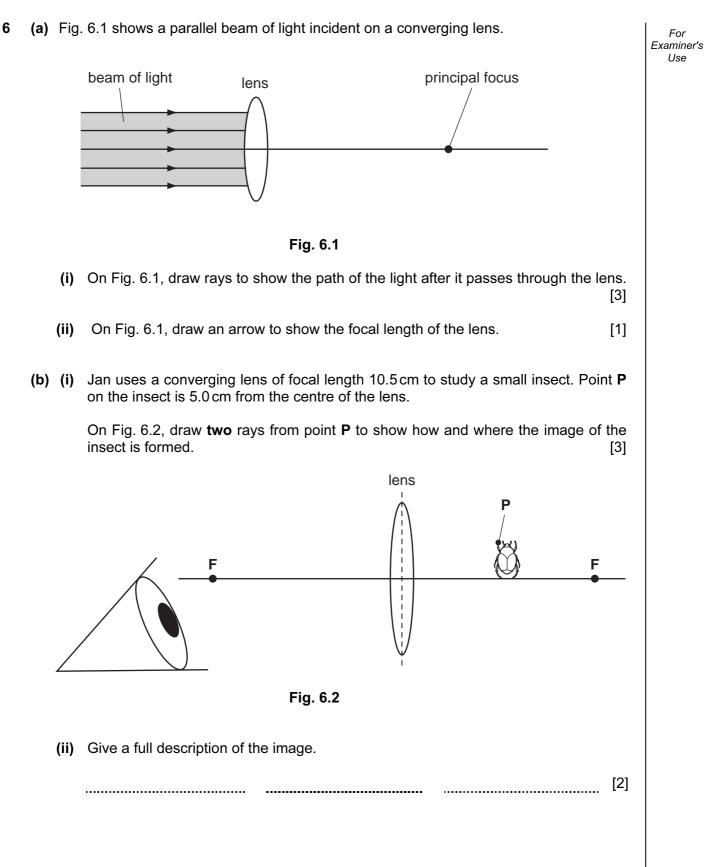



Fig. 5.2

9

(a)	(i)	State the time at which the reaction stopped.	For Examiner's
	(ii)	Explain why the reaction stopped.	[1] Use
			[1]
(b)		e experiment is repeated using the same mass of magnesium ribbon and a m icentrated solution of hydrochloric acid.	ore
	On	Fig. 5.2, sketch the line you would expect for this second experiment.	[2]
(c)	Cal	culate the mass of magnesium used in the reaction.	
	[Re	lative atomic masses: A _r : H,1; C <i>l</i> ,35.5; Mg,24.]	
	The	e volume of one mole of any gas is 24 dm ³ at room temperature and pressure.	
	Shc	ow your working in the box.	
		mass of magnesium = g	[4]

Zinc	and	d copper are two commonly used metals.	For
(a)	Zino	c is mixed with copper to make the alloy brass.	Examiner's Use
	Bra	ss is stronger than either pure metal. Explain why.	
1		[3]	
(b)	Zino	c is used to make galvanised steel.	
	(i)	What is galvanised steel?	
		[1]	
	(ii)	Explain how galvanised steel is more useful than steel that has not been galvanised.	
		[1]	
(iii)	Explain how zinc makes this improvement to steel.	
		[2]	
(c)	Cop	oper is used to make saucepans.	
	Sta	te which property of copper makes it a good choice for this application.	
		[1]	

8 Daniel is investigating the resistance of a length of nichrome wire. He builds the circuit shown in Fig. 8.1.

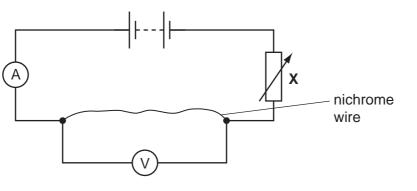
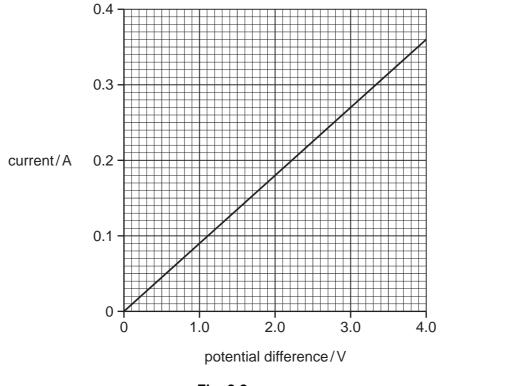



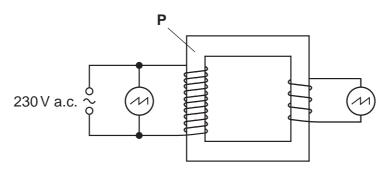
Fig. 8.1

(a) He takes a series of readings of the current with different potential differences across the nichrome wire. He uses his results to draw the graph shown in Fig. 8.2.

- Fig. 8.2
- (i) Describe how he varies the potential difference across the nichrome wire.

[1]

For


Examiner's Use (ii) Use the graph to determine the resistance of the nichrome wire. Show your working.
resistance = _____ [3]
(b) Daniel then uses a second piece of nichrome wire half the diameter of the original wire. Calculate the resistance of this piece of wire.

resistance = [2]

[2]

Please turn over for Question 10.

10 Fig. 10.1 shows a transformer.

The input is connected to a cathode ray oscilloscope (c.r.o.) and the output is connected to another c.r.o.

(a) (i) The transformer works by electromagnetic induction.

Explain what is meant by *electromagnetic induction*.

(ii) Explain why the input to the transformer must be an alternating voltage.
[2]
(iii) P is the transformer core.
Name the material that P is made from.
[1]
(iv) Outline the role of P in the operation of the transformer. Your answer should include the properties of the material which make it suitable.
[2]

(b) (i) This transformer allows an appliance designed to be used on a 115V supply to be used on a 230V supply.

Examiner's Use

For

Calculate the turns ratio of the primary coil to the secondary coil (N_{primary} : $N_{\text{secondary}}$).

(N_{primary} : N_{secondary}) = [1]

(ii) Fig. 10.2 shows the screen of the c.r.o. that is connected to the input.

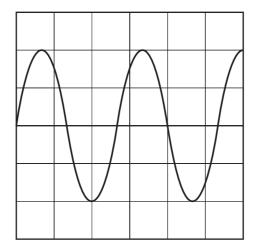


Fig. 10.2

On Fig. 10.2, draw the trace that would be obtained on the c.r.o. connected to the output.

You should assume that the time base and y-gain settings of the two cathode ray oscilloscopes are the same. [2]

BLANK PAGE

BLANK PAGE

=							L Hydrogen	Ğ	Group			≡	2	>	⋝	I>	2 Heitum 4 0
9 Beryllum 4 Mgmesum	Ε							_				11 B B Boron 5 27 27 Auminium 13	6 Carbon 6 28 28 14	14 Nitrogen 31 Phosphorus 15	16 8 Oxygen 32 32 32 16 16	19 9 Fluorine 35.5 35.5 17 Chlorine	20 Neon 10 Neon 40 18 Argon
40 45 48 51 52 55 56 56 Ca Sc atrium Tianum Vanadum Cromium Manganea 56 101 20 21 23 24 ND Mo TC Ru 101 88 89 91 93 96 TC Ru 36 101 Strontum Nuobum Mo TC Ru 36 101 36 <td>45 48 51 52 55 Sc Ti V Cr Manganese 21 23 91 93 96 25 89 91 93 96 75 26 Yritum Zronium Nobuldenum Technetum 164netum</td> <td>48 51 52 55 Ti V C Manganese tanium Vanadum Chomium Manganese 23 24 25 55 91 93 96 25 27 Nicobum Moo TC 26 20 21 No Moo TC 26 21 No Moo TC 26 21 No Moo TC 26</td> <td>51 52 55 V Cr Mn Adum Chromium Manganese 03 96 25 93 96 TC ND Mo TC 100 km 136 holybdenum 142 holybdenum</td> <td>S5 Mangantse 25 25 1 achnetum 4</td> <td>55 mganese 22 chnetium</td> <td>56 Iron 26 101 8 U 8 Rutheni</td> <td>_ 5</td> <td>59 Cobalt 27 103 103 Rhodium</td> <td>59 Nickel Nickel 28 106 46 Pdladium</td> <td>64 Copper 29 29 29 29 29 40 47 8ilver</td> <td>65 Zn 30 2inc 112 112 48 Cdd</td> <td>70 Gallium 31 115 115 115 115 49</td> <td>73 Germanium 32 119 119 71n 50</td> <td>75 AS Arsenic 33 122 Sb Antimony 51</td> <td>79 Selenium 34 128 Telurium 52</td> <td>80 Bro 35 127 127 53 lodine</td> <td>84 Krypton 36 131 54 Xenon</td>	45 48 51 52 55 Sc Ti V Cr Manganese 21 23 91 93 96 25 89 91 93 96 75 26 Yritum Zronium Nobuldenum Technetum 164netum	48 51 52 55 Ti V C Manganese tanium Vanadum Chomium Manganese 23 24 25 55 91 93 96 25 27 Nicobum Moo TC 26 20 21 No Moo TC 26 21 No Moo TC 26 21 No Moo TC 26	51 52 55 V Cr Mn Adum Chromium Manganese 03 96 25 93 96 TC ND Mo TC 100 km 136 holybdenum 142 holybdenum	S5 Mangantse 25 25 1 achnetum 4	55 mganese 22 chnetium	56 Iron 26 101 8 U 8 Rutheni	_ 5	59 Cobalt 27 103 103 Rhodium	59 Nickel Nickel 28 106 46 Pdladium	64 Copper 29 29 29 29 29 40 47 8ilver	65 Zn 30 2inc 112 112 48 Cdd	70 Gallium 31 115 115 115 115 49	73 Germanium 32 119 119 71n 50	75 AS Arsenic 33 122 Sb Antimony 51	79 Selenium 34 128 Telurium 52	80 Bro 35 127 127 53 lodine	84 Krypton 36 131 54 Xenon
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	139 178 181 184 186 Lantbarum Hf Ta W Re 57 * 72 74 75 227 Act 73 74 75 77 89 Actium 1 1 1 1 1	178 181 184 186 Hf Ta W Re Hahhum Tantalum Tungsten 75	181 184 186 Ta V Realistic Induition Tungstan 75	184 186 186 186 186 186 186 186 186 186 186	Re Penium 76	190 OS Osmium 76		192 r 77	195 Platinum 78	197 Au ⁷⁹ Gold	201 Hg ^{Mercury}	204 T 1 81 81	207 Pb Lead 82	209 Bismuth 83	Polonium 84	At Astatine 85	Radon 86
thanoid series termination of the series termination of termina	140 141 144 Ce Pr Nd Certum Praseodymium Neodymium 58 59 60 232 238 238	140 141 144 Ce Pr Nd Certum Praseodymium Neodymum 58 59 60 mass 232 238	140 141 144 Ce Pr Nd Priseodymium Neodymium Soodymium 232 238 238	144 Neodymium 60 238	144 Neodymium 60 238	Promethium 61		150 Samarium 62	152 Eu 63	157 Gd Gadolinium 64	159 Terbium 65	162 Dysprosium 66	165 Ho 67	167 Er 68 68	169 Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
X X = atomic symbol Th Pa U Np b = proton (atomic) number 90 91 92 93 93	number 0 Protactinium Uranium 0	Th Pa U number 90 91 92	Th Pa U Thorium Protactinium Uranium 91 92	Uranium 92	Jranium	Neptunium 93		Plutonium 94	Americium 95	Ourium Currium	BK Berkelium 97	Californium Californium	Einsteinium Go	Fermium 100	Mendelevium 101	Nobelium 102	Lr Lawrencium 103

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local

20