

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/21

Paper 2 (Core)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
Total				

This document consists of 16 printed pages.

1 A list of apparatus commonly found in the laboratory is shown below.

For Examiner's Use

	balance	beaker	burette	spatula	thermometer	
Cho	ose the item from t	he list which you	ı would use to c	arry out each of	the following action	ns.
(a)	weigh 0.5 g of cop	oper(II) carbona	te			
(b)	measure 25.0 cm ²	³ of water				
(c)	find the temperate	ure of boiling eth	nanol			
(d)	react together an	acid and an alka	ali			
						[4]

2 Two cars are being tested on a straight level track.

Fig. 2.1 shows the speed-time graphs for the two cars, each of mass 1500 kg.

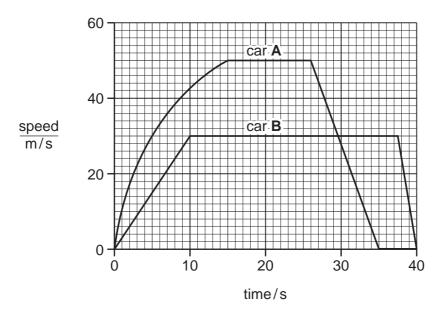


Fig. 2.1

(a) Determine the maximum speed of car A.

maximum speed = ____mm/s [1]

(b)	Describe the motion of car B during the last 2.5 s of the test.						
	[2]						
(c)	Use the graph to determine the distance travelled by car B during the first 10 s of the test.						
	distance = m [2]						
(d)	From 10.0 s to 37.5 s car B is travelling at constant speed in a straight line.						
	(i) State the resultant force on the car during this time.						
	force =[1]						
	(ii) Explain why the car engine must continue to do work during this period.						
	[1]						
(e)	At the beginning of the test both cars accelerate from rest.						
	Explain which car produces the greater accelerating force.						
	[2]						

3	(a)	Give an example of an ionic compound and an example of a covalent compound.	
		ionic compound	
		covalent compound[[2]
	(b)	Describe two differences in the properties of ionic and covalent compounds.	
		1	
		2	•••
		[2]
	(c)	Draw a dot and cross diagram to show the electron arrangement in an atom of magnesium.	of

For Examiner's Use

[2]

4	(a)	Name the main ore of aluminium.		
			[1]	
	(b)	Explain why aluminium is not extracted from its ore by heating with carbon.		
			[2]	

5 A student is investigating the melting of fruit flavoured crushed ice. Initially, the temperature of the ice is -10 °C. He measures the temperature every 30 s.

For Examiner's Use

Fig. 5.1 shows the apparatus he uses.

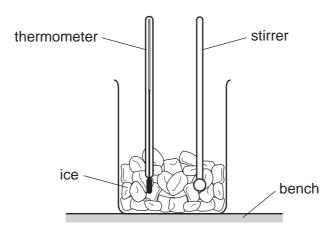


Fig. 5.1

(a)	(i)	Explain why the student stirs the crushed ice just before taking each temperature reading.
		[1]
	(ii)	Suggest why, in the first two minutes of the experiment, the temperature of the ice rises, even though there is no apparent heat source.
		[2]

The graph in Fig. 5.2 shows how the temperature of the ice changes with time.

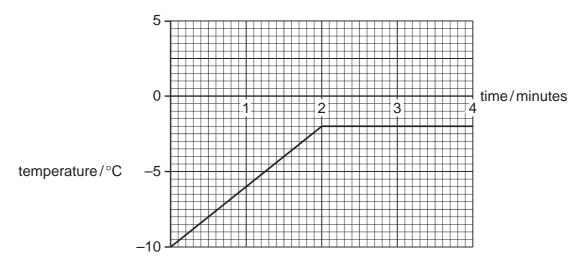


Fig. 5.2

(b)	Determine th	e temperature	at which this	sample of	ice melts
-----	--------------	---------------	---------------	-----------	-----------

temperature =	°C	[1]

(c)	Explain in terms of the kinetic theory what is happening to the sample from two minutes to four minutes.
	[2]

6 (a) Complete Table 6.1 by putting in the missing names, formulae and molar masses.

For Examiner's Use

Table 6.1

name	formula	mass of 1 mole/g
	H₂O	
hydrogen chloride		36.5
sodium fluoride		42
	N ₂	

ſ	4	
L	•	ı

(b)	Give the symbols	for the ions	ın sodium	fluoride and	d the number	of protons	present in
	each ion.						

sodium ion	 number of protons		
fluoride ion	number of protons		[2]

- 7 The radioactive isotope $^{105}_{45}$ Rh decays by emitting a beta-particle (β -particle).
 - (a) (i) State the number of protons in the nucleus of this isotope.

number of protons = [1]

(ii) Calculate the number of neutrons in the nucleus.

number of neutrons = ____ [1]

	(b)	(i)	What is a beta-particle?	For Examiner's Use
				•••
				[1]
		(ii)	Describe the changes in the nucleus when a beta-particle is emitted.	
				[2]
8	(a)	Giv	e an advantage and a disadvantage of using hydrogen as a fuel for motor vehicles	
		adv	antage	
		disa	advantage[[2]
	(b)	Wri	te a balanced equation for the burning of hydrogen in air.	
				[2]
	(c)	Des	scribe a test for hydrogen and state the expected result.	
		test		
		resi	ult[[2]
	(d)	The	reaction between hydrogen and nitrogen is an important industrial process.	
		(i)	Name the gas formed.	
				[1]
		(ii)	Name this industrial process.	
				[1]

9 A student experiments with a rubber band. She stretches it between two retort stands and notices that it produces a sound when she plucks it. The apparatus is shown in Fig. 9.1.

For Examiner's Use

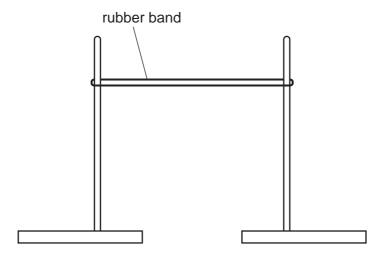


Fig. 9.1

(a)	Explain why the sound is produced.	
		••••
		[2]

(b) The student sets up a cathode ray oscilloscope and a microphone as shown in Fig. 9.2 to display the sound trace produced by the apparatus in Fig. 9.1.

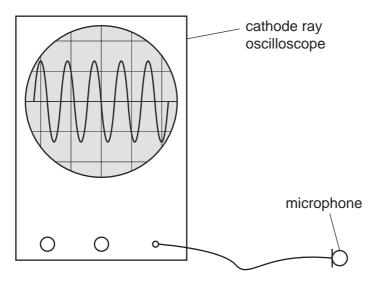
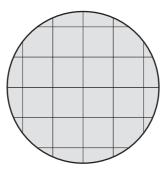



Fig. 9.2

(i) She now plucks the rubber band so that a quieter note of the same frequency is heard.

For Examiner's Use

Draw, on Fig. 9.3, the trace that is now seen.

[2]

Fig. 9.3

(ii)	She moves the stands further apart. She plucks the band again. The frequency of the sound now heard is greater than before.
	Explain what is meant by the term <i>frequency</i> and state the unit used to measure it.

unit	[2	1
GI III	1-	ч.

10	Chlorine is in Group VII of the Periodic Table.				
	(a)	Name this Group.			
			[1]		
	(b)	Name another element in this Group.			
			[1]		
	(c)	State one use of chlorine.			
			[1]		
	(d)	Name the Group II element which is in the same period as chlorine.			
			[1]		
	(e)	Describe how, using chlorine, you can show that a solution contains bromide ions.			
			[2]		
	(f)	Write down the number of electrons in a bromine atom and in a bromide ion.			
		bromine atom			
		bromide ion	[2]		

11 Fig. 11.1 shows an electric circuit. The e.m.f. of the battery is 9.0 V.

For Examiner's Use

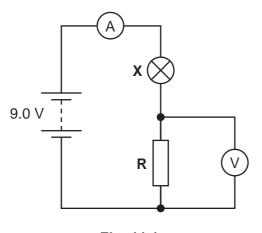


Fig. 11.1

(a)	Name component X .	[1	1
` '	•	 -	-

- **(b)** The resistance of resistor **R** is 12Ω and the resistance of component **X** is 8.0Ω .
 - (i) Calculate the combined resistance of R and X.

resistance =
$$\Omega$$
 [1]

(ii) Calculate the current measured by the ammeter.

(iii) Calculate the reading on the voltmeter.

12	Met seri	thane and ethane are hydrocarbons. They are members of the same homologous ies.	For Examiner's Use
	(a)	Name this homologous series.	
		[1]
	(b)	Give the name and formula of the next member of this series.	
		name	
		formula [2]
	(c)	Explain why ethanol, C ₂ H ₅ OH, is not a hydrocarbon.	
			•
		[2	.

13 (a) Fig. 13.1 shows a stiff copper rod suspended between two magnetic poles. The copper rod is freely hinged at the top.

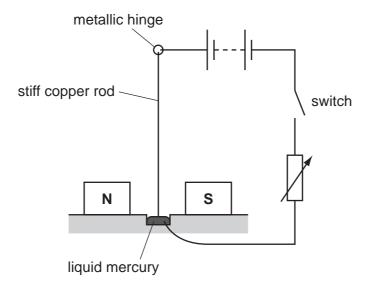


Fig. 13.1

(a)	Draw, on Fig. 13.1, the magnetic field between the poles.	[3]
(b)	Explain why a current passes through the circuit when the switch is closed.	
		[2]
(c)	State what will be observed when switch is closed.	
		[2]
(d)	The connections to the battery are reversed so that the current in the circuit is in topposite direction.	he
	State how the observations change.	
		[1]

DATA SHEET
The Periodic Table of the Elements

	0	Heium	20 Neon 10 A4 Argan	84 Kr Krypton 36	131 Xe Xenon Xenon 54	Radon 86		Lu Lutetium 71	Lr Lawrencium 103
	=		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	5		16 Oxygen 8 32 S Sulfur	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thullum 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 97 Phosphorus 15	AS As Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium
	2		12 Carbon 6 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5 27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96
Group				59 Nicke l 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gre				59 Co Cobalt 27	Rh Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu Plutonium
		T Hydrogen		56 Fe Iron 26	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89	l series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Mg Magnesium 12	40 Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × □
	_		7	39 K	Rubidium 37	Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.