## MARK SCHEME for the October/November 2011 question paper

## for the guidance of teachers

## 0652 PHYSICAL SCIENCE

0652/32

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|   | Page 2                                                                                                                                                                                                                                    |                                                                                                                                                                    |                        | Mark Scheme: Teachers' version                                                                                                                                                                                                     | Syllabus                | Paper        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|
|   |                                                                                                                                                                                                                                           |                                                                                                                                                                    |                        | IGCSE – October/November 2011                                                                                                                                                                                                      | 0652                    | 32           |
| 1 | (a)                                                                                                                                                                                                                                       | 50 n                                                                                                                                                               | 50 m/s ;               |                                                                                                                                                                                                                                    | [1]                     |              |
|   | (b)                                                                                                                                                                                                                                       | constar                                                                                                                                                            |                        | tion/deceleration/slowing down ;<br>/steady referring to acceleration/deceleration<br>calculated value of acceleration/comes to rest ;                                                                                             | ( <b>not</b> at cons    | stant<br>[2] |
|   | (c)                                                                                                                                                                                                                                       |                                                                                                                                                                    |                        | of gradient, (a = (30 – 0)/(10 – 0)) ;<br>n/s² ;                                                                                                                                                                                   |                         | [2]          |
|   |                                                                                                                                                                                                                                           | (ii)                                                                                                                                                               |                        | of F = ma = 1500 × 3.0 (e.c.f.) ;<br>00 N ;                                                                                                                                                                                        |                         | [2]          |
|   |                                                                                                                                                                                                                                           | <ul> <li>(iii) mention of frictional force/air resistance;</li> <li>force from engine = accelerating force + frictional force/work done again friction;</li> </ul> |                        |                                                                                                                                                                                                                                    | ainst<br>[2]            |              |
|   | <ul> <li>(d) (car B);<br/>larger gradient/same mass (not accept shorter period of time);<br/>greater acceleration/deceleration;<br/>(both marks can be scored for a correct calculation of both accelerations and<br/>comment)</li> </ul> |                                                                                                                                                                    |                        |                                                                                                                                                                                                                                    | [2]<br>and              |              |
|   |                                                                                                                                                                                                                                           |                                                                                                                                                                    |                        |                                                                                                                                                                                                                                    |                         | [Total: 11]  |
| 2 | (a)                                                                                                                                                                                                                                       |                                                                                                                                                                    | all fo<br>bala         | $P + 2CO \rightarrow N2 + 2CO_2$<br>prmulae correct ;<br>nced ;<br>$+ CO \rightarrow N + CO_2 max 1)$                                                                                                                              |                         | [2]          |
|   |                                                                                                                                                                                                                                           | • •                                                                                                                                                                | carb<br>(mai<br>gain   | gen (monoxide) is reduced because it has lost oxyg<br>on (monoxide) is oxidised because it has gained ox<br>ks can be gained for correct reference to<br>/oxidation states)<br>ax if general explanation without reference to NO a | ygen ;<br>electron loss | [2]<br>and   |
|   |                                                                                                                                                                                                                                           | (iii)                                                                                                                                                              | (per<br>(per           | two:<br>centage) of nitrogen monoxide has decreased ;<br>centage) of nitrogen has increased ;<br>centage) of carbon monoxide has decreased ;<br>centage) of carbon dioxide has increased ;                                         |                         | [max 2]      |
|   |                                                                                                                                                                                                                                           | • •                                                                                                                                                                | with<br>( <b>if</b> th | on monoxide reacts with oxygen to form carbon dic<br>oxygen to form water ;<br>ne carbon monoxide to carbon dioxide process is no<br>e here)                                                                                       |                         | [1]          |
|   | (b)                                                                                                                                                                                                                                       |                                                                                                                                                                    | zinc                   | anising means coating with zinc ;<br>more reactive than steel/iron ;<br>reacts not iron/sacrificial reaction ;                                                                                                                     |                         | [3]          |

|   | Page 3                                                                                                                                                                                           |                                       | Mark Scheme: Teachers' version                                                                                                                                                                 | Syllabus                      | Paper           |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|--|
|   | ~                                                                                                                                                                                                |                                       | IGCSE – October/November 2011                                                                                                                                                                  | 0652                          | 32              |  |
|   | <ul> <li>(ii) painted steel will rust if scratched or chipped but galvanised will not (rust);</li> <li>(both required, but allow the comment re zinc not reacting if included in (i))</li> </ul> |                                       |                                                                                                                                                                                                |                               |                 |  |
|   |                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                |                               | [Total: 11]     |  |
| - |                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                |                               |                 |  |
| 3 | <ul> <li>(a) the band vibrates ;<br/>causing air (molecules) to vibrate/forming a longitudinal/compression wave <u>in</u><br/><u>the air</u>;</li> </ul>                                         |                                       |                                                                                                                                                                                                |                               |                 |  |
|   | (b) 4.5 or 5 waves number of waves or specified number of divisions ;                                                                                                                            |                                       |                                                                                                                                                                                                |                               |                 |  |
|   | 4.5 in 4 divs (accept 5 waves in 5 divs) ;<br>f = 450 (Hz) ;                                                                                                                                     |                                       |                                                                                                                                                                                                |                               |                 |  |
|   | (allow rounding errors for answer) (use of only one wave – 2 max, raw answer 400 Hz – 2 max)                                                                                                     |                                       |                                                                                                                                                                                                |                               |                 |  |
|   |                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                |                               | [Total: 5]      |  |
| 4 | (a) (i)                                                                                                                                                                                          | light                                 | provides <u>energy</u> ;                                                                                                                                                                       |                               | [1]             |  |
|   | (ii)                                                                                                                                                                                             | redu                                  | uction is gain of an electron/oxidation state goes do                                                                                                                                          | wn ;                          | [1]             |  |
|   | (iii)                                                                                                                                                                                            | Ag⁺                                   | $+ e^- \rightarrow Ag;$                                                                                                                                                                        |                               | [1]             |  |
|   | (b) (i)<br>(ii)                                                                                                                                                                                  | reac<br>filter<br>was<br>leav<br>keep | potassium bromide solution to silver nitrate solution;<br>r (to obtain ppt);<br>h <u>ppt</u> with distilled water;<br>re <u>ppt</u> to dry;<br>p in dark;<br>$IO_3 = 170$ and AgBr = 188;<br>5 | ution until no fur            | ther<br>[max 4] |  |
|   |                                                                                                                                                                                                  |                                       | ther of moles = $\frac{5}{170}$ (accept $\frac{5}{188}$ );                                                                                                                                     |                               |                 |  |
|   |                                                                                                                                                                                                  | = 5.                                  | 5 g ;                                                                                                                                                                                          |                               | [3]             |  |
|   |                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                |                               | [Total: 10]     |  |
| 5 | (a) (i)                                                                                                                                                                                          |                                       | of <i>I</i> = <i>V/R</i> (= 6/48) ;<br>125 A (0.13 A) ;                                                                                                                                        |                               | [2]             |  |
|   | (ii)                                                                                                                                                                                             | (e.c.<br>= 36                         | .f.) use of <i>R</i> = <i>V/I</i> (= 4.5/0.125) ;<br>δ Ω ;                                                                                                                                     |                               | [2]             |  |
|   | (b) <i>R</i> =                                                                                                                                                                                   | = V/I =                               | = 3.0/0.125 = 24 $\Omega$ /discussion re ½ potential differe                                                                                                                                   | ence leads to $\frac{1}{2}$ R | ; [1]           |  |
|   | (c) (i)                                                                                                                                                                                          | <i>R</i> =                            | of $1/R = 1/R_1 + 1/R_2 = 1/24 + 1/8 = 4/24$ (accept 24/4 = 6 $\Omega$ ;<br>st show R = 6 $\Omega$ )                                                                                           | sum/product) ;                | [2]             |  |

© University of Cambridge International Examinations 2011

|   | Page 4         | 4                                                                                                        | Mark Scheme: Teachers' version                                                                                            | Syllabus           | Paper       |  |
|---|----------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--|
|   |                |                                                                                                          | IGCSE – October/November 2011                                                                                             | 0652               | 32          |  |
|   | (ii)           | (6 +                                                                                                     | 24 =) 30 Ω ;                                                                                                              |                    | [1]         |  |
|   | (iii)          | •                                                                                                        | f.) current = 6/30 = 0.2 A ;<br>ential difference = 0.2 × 6 = 1.2 V ;                                                     |                    | [2]         |  |
|   | (iv)           |                                                                                                          | /not properly lit if potential difference<br>ntial difference > 3, normal if potential difference = 3                     | , 0                | if<br>[1]   |  |
|   |                |                                                                                                          |                                                                                                                           |                    | [Total: 11] |  |
|   |                |                                                                                                          |                                                                                                                           |                    |             |  |
| 6 |                | (a) $CaCO_3 = 100$ ;<br>2.5                                                                              |                                                                                                                           |                    |             |  |
|   |                |                                                                                                          | of moles = $\frac{2.5}{100}$ or 0.025 ;                                                                                   |                    | [0]         |  |
|   | = (            | ).6 dm                                                                                                   | ;                                                                                                                         |                    | [3]         |  |
|   | (b) (i)        | <ul> <li>(b) (i) calcium oxide is a base because it gains a proton/the oxide ion gain proton;</li> </ul> |                                                                                                                           |                    |             |  |
|   |                | hydr                                                                                                     | ochloric acid is an acid because it donates a proton<br>x 1 if neither refers to specific reaction)                       | . ,                | [2]         |  |
|   | (ii)           | amp<br>acid<br>neut                                                                                      |                                                                                                                           |                    | [3]         |  |
|   |                | nout                                                                                                     | . u ,                                                                                                                     |                    |             |  |
|   |                |                                                                                                          |                                                                                                                           |                    | [Total: 8]  |  |
| 7 | (a) (i)        | then                                                                                                     | needle of the voltmeter moves ;<br>goes back to zero ;<br><b>not</b> allow if there is a residual current. e.g. needle fa | lls to zero)       | [2]         |  |
|   | (ii)           |                                                                                                          | n the magnet moves the coil cuts/there is a <u>change</u><br>h <u>induces</u> an e.m.f./current ;                         | in magnetic flux ; | [2]         |  |
|   | <b>(b)</b> the | e need                                                                                                   | le of the voltmeter moves in the opposite direction ;                                                                     |                    | [1]         |  |
|   |                |                                                                                                          |                                                                                                                           |                    |             |  |
|   | • •            |                                                                                                          | ce seen on the cathode ray oscilloscope ;<br>g current produces changing field ;                                          |                    | [2]         |  |
|   |                |                                                                                                          |                                                                                                                           |                    | [Total: 7]  |  |
| 8 | (a) (i)        | nobl                                                                                                     | e gases (do not accept inert, rare) ;                                                                                     |                    | [1]         |  |
|   | (ii)           |                                                                                                          | ng point increases/density increases/mass increase<br>increasing atomic number/down group ;                               | es;                | [2]         |  |
|   | (iii)          | unre                                                                                                     | eactive (accept inert) ;                                                                                                  |                    | [1]         |  |
|   | (iv)           |                                                                                                          | value between 4.5 and 9.9 kg/m <sup>3</sup> ;                                                                             |                    | [1]         |  |
|   | . ,            |                                                                                                          |                                                                                                                           |                    |             |  |

|   | Page 5                                                                                                                                                                                                                |         |                                    | Mark Scheme: Teachers' version                                                                                                                                                                                          | Syllabus | Paper       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|   |                                                                                                                                                                                                                       |         |                                    | IGCSE – October/November 2011                                                                                                                                                                                           | 0652     | 32          |
|   | (b)                                                                                                                                                                                                                   | (i)     |                                    | ram showing 8 electrons in outer shell ;<br>ells with 2 electrons in first shell and 8 in second sh                                                                                                                     | ell ;    | [2]         |
|   |                                                                                                                                                                                                                       | <i></i> |                                    |                                                                                                                                                                                                                         |          |             |
|   |                                                                                                                                                                                                                       | (ii)    | pota                               | ssium, 1+ <b>OR</b> chloride, 1- ;;                                                                                                                                                                                     |          | [2]         |
|   |                                                                                                                                                                                                                       | (iii)   |                                    | s electrons ;<br>electrons are <u>lost</u> ;                                                                                                                                                                            |          | [2]         |
|   |                                                                                                                                                                                                                       |         |                                    |                                                                                                                                                                                                                         |          | [Total: 11] |
|   |                                                                                                                                                                                                                       |         |                                    |                                                                                                                                                                                                                         |          |             |
| 9 | (a)                                                                                                                                                                                                                   | (i)     | liqui                              | d turns to vapour/gas ( <u>not</u> molecules) ;                                                                                                                                                                         |          | [1]         |
|   |                                                                                                                                                                                                                       | (ii)    | evap<br>OR<br>boilin<br>evap<br>OR | ng: bubbles of vapour form in the liquid ;<br>boration: molecules leave the surface of the liquid ;<br>ng occurs at fixed temperature ;<br>boration at a range of temperatures 1 ;<br>ng is a violent process (1 max) ; |          | [max 2]     |
|   | (b)                                                                                                                                                                                                                   | 15 -    | – 25 °                             | °C ;                                                                                                                                                                                                                    |          | [1]         |
|   | (c) molecules lose energy/slow down etc.; (not accept molecules lose thermal energy)<br>clear energy loss is loss in <u>kinetic</u> energy/energy is transferred to the surroundings/ <u>hence</u> temperature falls; |         |                                    |                                                                                                                                                                                                                         |          |             |
|   |                                                                                                                                                                                                                       |         |                                    |                                                                                                                                                                                                                         |          | [Total: 6]  |