

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICAL SO	CIENCE		0652/03
Paper 3 (Exter	nded)	October/Nov	ember 2007
		1 hour	15 minutes
Candidates an	swer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

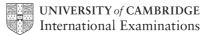
Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.


A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Total		

This document consists of **14** printed pages and **2** blank pages.

1 Fig. 1.1 shows the speed of a car as it moves along a straight, level track.

For Examiner's Use

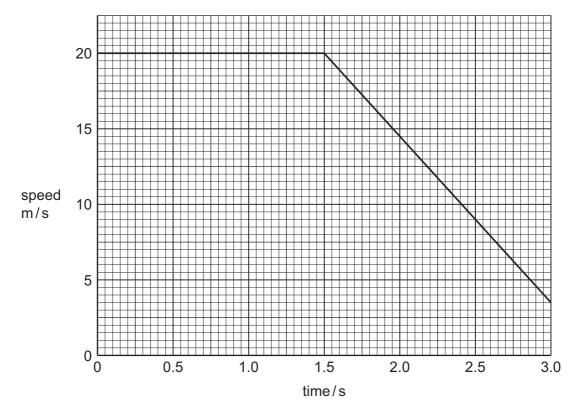


Fig. 1.1

(a)	During the first 1.5 s the car travels at a constant speed.
	State the overall force on the car during this period of time.

(b) Calculate the acceleration of the car between 1.5 s and 3.0 s.

(c) The mass of the car is 1200 kg.

Calculate the braking force on the car between 1.5 s and 3.0 s.

2 Fig. 2.1 shows a view from above as a set of ripples move out from a point when a stone is thrown into a pond.

For Examiner's Use

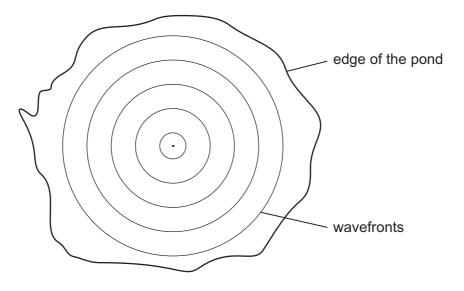


Fig. 2.1

- (a) (i) Mark on Fig. 2.1 one wavelength and label it λ .
 - (ii) A boy counts 12 waves hitting the bank in 5.0 s. Calculate the frequency of the waves.

(iii) The wavelength of the waves is 0.40 m. Calculate the speed at which the waves move.

(b) The water is shallower near the bank and the waves slow down. Suggest what effect that this will have on

(i) the wavelength of the waves,	

(ii) the frequency of the waves.

3 A student reacts the same mass of calcium carbonate with excess of the same hydrochloric acid solution at different temperatures.

For Examiner's Use

At each temperature he measures the time taken for all of the calcium carbonate to react.

His results are shown in Fig. 3.1.

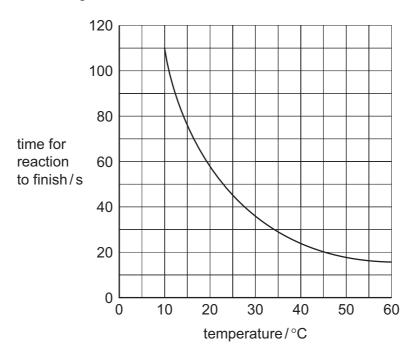


Fig. 3.1

(a)	(i)	Describe the effect of change in temperature on the rate of this reaction.	
			 [2]
	(ii)	State two other factors that may affect the rate of a reaction.	[-]
		1	
		2.	[2]

(b) At a higher temperature the particles have more energy to react. Energy may also be supplied by light. This happens in the process called photosynthesis. (i) Plants use photosynthesis to make glucose. Name the reactants and the other product of photosynthesis. reactants and other product [3] (ii) What enables the energy from sunlight to be absorbed in this process? [1] (iii) The process is speeded up by the presence of an enzyme. What is an enzyme? (c) Energy from light is also used in photography. Photographic film contains the compound silver bromide. When light falls on the film a photochemical reaction takes place. Silver metal is formed, creating a black area on the film.

For Examiner's Use

What type of reaction have the silver ions undergone?

4 Fig. 4.1 shows a ray of light entering a parallel sided glass block.

For Examiner's Use

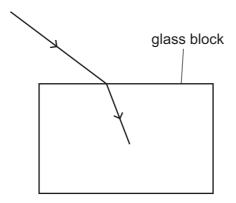
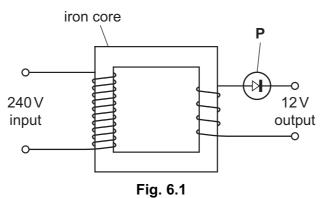


Fig. 4.1

- (a) Complete the path of the light through and as it leaves the block. [1]
- **(b)** Calculate the value of the angle of refraction if the glass has a refractive index of 1.54 and the angle of incidence is 53.1°.

Show your working.


angle of refraction = _____ [4]

5

(a) Co	and aluminium are two commonly used	i metais.	
(a) Co	oper is a metal that can be found 'native	e'.	
(i)	Explain this meaning of the term native	e.	
		[1]
(ii)	Name one other metal that is commor	nly found native.	
		[1]
(iii)	Complete Table. 5.1 to show two uses uses are based.	s of copper and the properties on which thes	e
	Table	e 5.1	
	use of copper	property of copper	
			4]
			•
(b) Alu	minium is not found native. It is found a	s a compound.	
(i)	The main ore of aluminium contains th	ne compound aluminium oxide	
()		o compound diaminam exide.	
()	Name this ore.		
(,	Name this ore.		1]
(ii)	Name this ore.		1]
· ·	Name this ore. Aluminium foil is used for food contain		1]
· ·	Name this ore. Aluminium foil is used for food contain	ers.	1]
· ·	Name this ore. Aluminium foil is used for food contain Aluminium is a fairly reactive metal, but	ers.	1]
· ·	Name this ore. Aluminium foil is used for food contain Aluminium is a fairly reactive metal, but Explain why.	ers. ut aluminium foil does not react with food.	1] 1]
· ·	Aluminium foil is used for food contain Aluminium is a fairly reactive metal, but Explain why.	ers. ut aluminium foil does not react with food.	···
(ii)	Aluminium foil is used for food contain Aluminium is a fairly reactive metal, but Explain why. State another use of aluminium, and e	ers. ut aluminium foil does not react with food.	 1]
(ii)	Aluminium foil is used for food contain Aluminium is a fairly reactive metal, but Explain why. State another use of aluminium, and equivalent time.	ers. ut aluminium foil does not react with food. explain why it is a good metal for this use.	 1]

6 Fig. 6.1 shows a design for a battery charger, which is made up from a transformer and component **P**.

For Examiner's Use

(a) (i) Name component P.

(ii)	Explain why P is needed in the circuit.	
		[3]

(b)	Explain how the transformer converts an input voltage into a different output voltage.	
		••••
		••••
		••••
		г л

(c) The primary coil has 1800 turns.

Calculate the number of turns in the secondary coil.

number of turns =	[3
	 L .

(d) A battery takes 3 hours to charge with an average current of 200 mA. Calculate the total charge delivered.

7 Table 7.1 gives information about some of the elements in Group II of the Periodic Table.

Table 7.1

element	atomic number	formula of oxide	melting point in °C	reaction with cold water
magnesium	12	MgO	649	slow
calcium	20	CaO	839	steady
strontium	38	SrO	769	rapid
barium	56	BaO	725	

(a)	Thr	ee of these elements show a trend in a physical property.	
	(i)	Describe this physical trend.	
			[2]
	/::\	Which algorith does not fit in with this troud?	[-]
	(ii)	Which element does not fit in with this trend?	
			[1]
(b)	The	e elements in Table 7.1 show a trend in a chemical property.	
	Des	scribe this chemical trend.	
			[2]
	•••••		[-]
(c)		en a small piece of calcium is added to cold water, a steady stream of bubbles en off. This is hydrogen gas.	is
		en the reaction is completed, a test with Universal Indicator shows the water re a pH of 12. Calcium hydroxide has been formed.	to
	(i)	Write a balanced symbol equation for the reaction of calcium with cold water.	
			[2]
	(ii)	What does the test with Universal Indicator show about the properties of calciulation hydroxide?	um
			[1]
	(iii)	What would you see when a small piece of barium is added to cold water?	
			[2]

8 Fig. 8.1 shows the structure of a cathode ray tube.

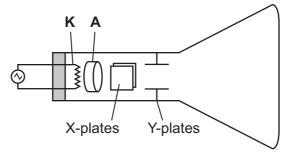


Fig. 8.1

(a)	Explain how parts K and A produce cathode rays.
	[4]

(b) Fig. 8.2 shows an experiment to measure the speed of sound. Two microphones are placed 8.0 m apart and connected to a cathode ray oscilloscope. A loudspeaker is placed in front of them.

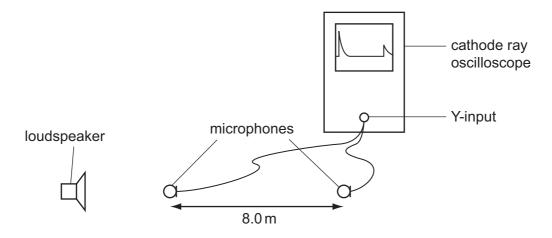


Fig. 8.2

The loudspeaker produces a sharp pulse of sound which is detected by the microphones and displayed on the cathode ray oscilloscope screen.

Fig. 8.3 shows the screen in more detail. The time base is set to 5 ms/square.

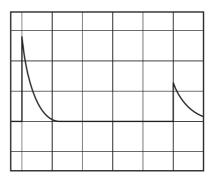


Fig. 8.3

(i)	What is the t	ime interval	between the	pulses	received	from	the two	microphones	;?
-----	---------------	--------------	-------------	--------	----------	------	---------	-------------	----

time = ____

(ii) Calculate the speed of the sound.

			12
9	Cop	per((II) oxide reacts with dilute sulphuric acid according to the following equation.
			CuO + H_2SO_4 \longrightarrow CuSO ₄ + H_2O
	A st	tude	nt uses this reaction to prepare crystals of copper(II) sulphate.
	(a)	То	make sure that the crystals are pure, an excess of copper(II) oxide must be used.
		(i)	Explain why an excess of copper(II) oxide must be used to ensure purity of the crystals.
			[1]
		(ii)	The student uses $10.0\mathrm{g}$ of copper(II) oxide and $100\mathrm{cm}^3$ of $1.0\mathrm{mol}/\mathrm{dm}^3$ sulphuric acid.
			Show by calculation that the copper(II) oxide is in excess.
			[A _r : Cu, 64; O,16.]
			[4]
	(b)		scribe how the student should carry out the preparation to obtain pure, dry crystals opper(II) sulphate.

For Examiner's Use

[4]

10 Fig. 10.1 shows the apparatus used to identify the radioactive emissions from different isotopes

For Examiner's Use

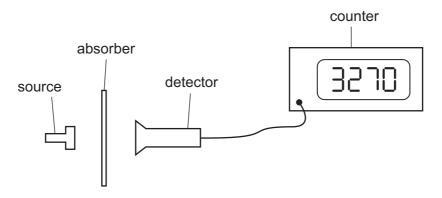


Fig. 10.1

Table 10.1 shows the count obtained in 2 minutes from an isotope of the element americium, using different absorbers.

Table 10.1

count with no absorber	count with paper absorber	count with aluminium absorber	count with lead absorber			
5854	1649	1644	103			

State, with reasons, the type or types of radiation emitted by the source.	
	[3

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Ne Neon	40 Ar Argon	8 X	Krypton 36	131	Xe	54	ı	Radon Radon	8	175 Lu Lutetium	Lr Lawrencium	103
	VII		19 F Fluorine	35.5 C 1 Chlorine	80 Br	Bromine 35	127	I selber	53 curie	,	At Astatine	3	Y b Ytterbium 70	Nobelium	102
			16 O Oxygen 8	32 S Sulphur 16	79 Se	Selenium 34	128	je je	52	-	Po Polonium		169 Tm Thulium 69	Mandelevium	101
	>		14 N itrogen 7	31 P Phosphorus				Sp	51	209	Bismuth	3	167 Er Erbium 68		100
	>		12 C Carbon 6	28 Si Silicon	73 Ge	Germanium 32	119	Sn		207	Pp Lead	70	165 Ho Holmium 67		66
	≡		11 B Boron 5	27 A 1 Aluminium 13			115	ų,	49	204	T. Thallium	-	162 Dy Dysprosium 66		98
					65 Zn	Zinc 30	112	Cd	48	201	Hg Mercury	3	159 Tb Terbium 65	BK Berkelium	97
					Cu	Copper 29	108	Ag		197	Au Gold		157 Gd Gadolinium 64	Cm Ourium	96
Group					59 Z	Nickel 28	106	Pd	46	195	Platinum	2	152 Eu Europium 63	Am Americium	95
ģ					59 Co	Cobalt 27	103	格	45	192	Iridium	3	Sm Samarium 62	Pu	94
		1 Hydrogen			56 Fe	Iron 26	101	Ru	44	190	Osmium Osmium	2	Pm Promethium 61		93
					55 Mn	Manganese 25		T _c	43	186	Rhenium	2	Neodymium 60	238 U	92
					Ç	Chromium 24	96	Mo	42	184	Tungsten	<u>t</u>	Pr Praseodymium 59	Pa Protactinium	91
					51	Vanadium 23	63	N	41	181	Tantalum	2	140 Ce Cerium	232 Th	06
					48	Titanium 22	16	Z	40	178	Hafinium T2	7	1	nic mass	nic) number
					45 Sc	Scandium 21	88	>	39	139	Lanthanum	227 Ac	d series series	a = relative atomic mass X = atomic symbol	b = proton (atomic) number
	=		9 Be Beryllium 4	24 Mg Magnesium	40 Ca	Calcium 20	88	Š	38	137	Barium Barium	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	« ×	
	_		7 Li Lithium	23 Na Sodium	® ¥	Potassium 19	85	Rb a	37	133	Caesium Caesium	Francium 87	*58-71 L	Key	a

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.